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Abstract

We examine how susceptible jobs are to computerisation. sfo a
sess this, we begin by implementing a novel methodology tinate
the probability of computerisation for 702 detailed ocdigss, using a
Gaussian process classi er. Based on these estimates, angirex ex-
pected impacts of future computerisationuwslabour market outcomes,
with the primary objective of analysing the number of jobgigk and
the relationship between an occupation's probability ahpaterisation,
wages and educational attainment. According to our estisnaibout 47
percent of totalus employment is at risk. We further provide evidence
that wages and educational attainment exhibit a strongtivegalation-
ship with an occupation's probability of computerisation.
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. INTRODUCTION

In this paper, we address the question: how susceptiblebsd¢ computerisa-
tion? Doing so, we build on the existing literature in two wayirst, drawing
upon recent advances in Machine Learning  and Mobile Robotics(R),
we develop a novel methodology to categorise occupatiocsrding to their
susceptibility to computerisationSecond, we implement this methodology to
estimate the probability of computerisation for 702 dethibccupations, and
examine expected impacts of future computerisationsfabour market out-
comes.

Our paper is motivated by John Maynard Keynes's frequentidcpre-
diction of widespread technological unemployment “due tio discovery of
means of economising the use of labour outrunning the paseheth we
can nd new uses for labour” (Keynes, 1933, p. 3). Indeed,rahe past
decades, computers have substituted for a number of jotiagding the func-
tions of bookkeepers, cashiers and telephone operatasr{Bnan, 1999; MG,
2013). More recently, the poor performance of labour marketoss advanced
economies has intensi ed the debate about technologi@ahpioyment among
economists. While there is ongoing disagreement about tiveng forces
behind the persistently high unemployment rates, a numbsclwlars have
pointed at computer-controlled equipment as a possible&aeapon for recent
jobless growth (see, for example, Brynjolfsson and McAR,1)?

The impact of computerisation on labour market outcome®lsestablished
in the literature, documenting the decline of employmentoutine intensive
occupations +e. occupations mainly consisting of tasks following well-ded
procedures that can easily be performed by sophisticageditdms. For exam-
ple, studies by Charlegt al. (2013) and Jaimovich and Siu (2012) emphasise
that the ongoing decline in manufacturing employment aeddisappearance
of other routine jobs is causing the current low rates of eymplent® In ad-

We refer to computerisation as job automation by means ofpcen-controlled equip-
ment.

2This view nds supportin a recent survey by the McKinsey Giblmstitute (1G1), showing
that 44 percent of rms which reduced their headcount simee hancial crisis of 2008 had
done so by means of automation (MGI, 2011).

3Because the core job tasks of manufacturing occupatiofmafalell-de ned repetitive
procedures, they can easily be codi ed in computer softvaaicethus performed by computers
(Acemoglu and Autor, 2011).



dition to the computerisation of routine manufacturingc&sAutor and Dorn
(2013) document a structural shift in the labour markethwvorkers reallo-
cating their labour supply from middle-income manufactgrio low-income
service occupations. Arguably, this is because the maasie$of service occu-
pations are less susceptible to computerisation, as tlggyreca higher degree
of exibility and physical adaptability (Autoret al,, 2003; Goos and Manning,
2007; Autor and Dorn, 2013).

At the same time, with falling prices of computing, problewlving skills
are becoming relatively productive, explaining the sutisédemployment growth
in occupations involving cognitive tasks where skilleddabhas a comparative
advantage, as well as the persistent increase in returrdutagon (Katz and
Murphy, 1992; Acemoglu, 2002; Autor and Dorn, 2013). Thietitousy and
Lovely Jobs”, of recent work by Goos and Manning (2007), tbaigtures the
essence of the current trend towards labour market potemzavith growing
employment in high-income cognitive jobs and low-incomenoed occupa-
tions, accompanied by a hollowing-out of middle-incometireijobs.

According to Brynjolfsson and McAfee (2011), the pace ofhtsalogi-
cal innovation is still increasing, with more sophistichtoftware technolo-
gies disrupting labour markets by making workers redund@fitat is striking
about the examples in their book is that computerisatiomikbnger con ned
to routine manufacturing tasks. The autonomous drivedass, developed by
Google, provide one example of how manual tasks in transpuitlogistics
may soon be automated. In the section “In Domain After Dom&omput-
ers Race Ahead”, they emphasise how fast moving these gewelts have
been. Less than ten years ago, in the chapter “Why Peopld/@atiler”, Levy
and Murnane (2004) pointed at the dif culties of replicatinuman perception,
asserting that driving in traf c is insusceptible to autdioa: “But execut-
ing a left turn against oncoming traf ¢ involves so many fastthat it is hard
to imagine discovering the set of rules that can replicateinaeids behaviour
[...]". Six years later, in October 2010, Google announdeat it had modi-
ed several Toyota Priuses to be fully autonomous (Bryrgstin and McAfee,
2011).

To our knowledge, no study has yet quanti ed what recentietdgical
progress is likely to mean for the future of employment. Thespnt study
intends to bridge this gap in the literature. Although thare indeed existing

3



useful frameworks for examining the impact of computerstendccupational
employment composition, they seem inadequate in explgithe impact of
technological trends going beyond the computerisatiomofine tasks. Semi-
nal work by Autor,et al. (2003), for example, distinguishes between cognitive
and manual tasks on the one hand, and routine and non-rdaskse on the
other. While the computer substitution for both cognitivel ananual routine
tasks is evident, non-routine tasks involve everythingifitegal writing, truck
driving and medical diagnoses, to persuading and sellmghd present study,
we will argue that legal writing and truck driving will soor lautomated, while
persuading, for instance, will not. Drawing upon recentaliegments in En-
gineering Sciences, and in particular advances in the efdsiL, including
Data Mining, Machine Vision, Computational Statistics anler sub- elds of
Arti cial Intelligence, as well asvr, we derive additional dimensions required
to understand the susceptibility of jobs to computerisatibleedless to say,
a number of factors are driving decisions to automate andameat capture
these in full. Rather we aim, from a technological capabsitpoint of view,
to determine which problems engineers need to solve for spgacupations
to be automated. By highlighting these problems, theiraifty and to which
occupations they relate, we categorise jobs accordingeio shisceptibility to
computerisation. The characteristics of these problenre weatched to dif-
ferent occupational characteristics, usmgvET data, allowing us to examine
the future direction of technological change in terms ofritpact on the occu-
pational composition of the labour market, but also the nemnab jobs at risk
should these technologies materialise.

The present study relates to two literatures. First, oulyaisabuilds on the
labour economics literature on the task content of emplayri®utor, et al,,
2003; Goos and Manning, 2007; Autor and Dorn, 2013). Basedeoned
premises about what computers do, this literature exantirekistorical im-
pact of computerisation on the occupational compositiotheflabour mar-
ket. However, the scope of what computers do has recentigreiqa, and will
inevitably continue to do so (Brynjolfsson and McAfee, 20MGI, 2013).
Drawing upon recent progress L, we expand the premises about the tasks
computers are and will be suited to accomplish. Doing so, wild lon the task
content literature in a forward-looking manner. Furtherepavhereas this liter-
ature has largely focused on task measures from the Dicti@i&®ccupational
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Titles (DOT), last revised in 1991, we rely on the 2010 version oftkog suc-
cessolo NET — an online service developed for the Department of Labot.
Accordingly, 0 NET has the advantage of providing more recent information
on occupational work activities.

Second, our study relates to the literature examining tfehofing of inf-
ormation-based tasks to foreign worksites (Jensen anadfle2005; Blinder,
2009; Jensen and Kletzer, 2010; Oldenski, 2012; Blinderkmeger, 2013).
This literature consists of different methodologies tokramd categorise oc-
cupations according to their susceptibility to offshoringor example, using
O NET data on the nature of work done in different occupationg)dgdr (2009)
estimates that 22 to 29 percentus jobs are or will be offshorable in the next
decade or two. These estimates are based on two de ningatkastics of jobs
that cannot be offshored: (a) the job must be performed a¢a spwork loca-
tion; and (b) the job requires face-to-face personal comaation. Naturally,
the characteristics of occupations that can be offshoredldfierent from the
characteristics of occupations that can be automated.Xaon@e, the work of
cashiers, which has largely been substituted by self- seechnology, must
be performed at speci ¢ work location and requires facdaime contact. The
extent of computerisation is therefore likely to go beyohdttof offshoring.
Hence, while the implementation of our methodology is samib that of Blin-
der (2009), we rely on different occupational charactesst

The remainder of this paper is structured as follows. IniSedt, we review
the literature on the historical relationship between tedbgical progress and
employment. Section Il describes recent and expectedduechnological
developments. In Section IV, we describe our methodology,ia Section V,
we examine the expected impact of these technological derednts on labour
market outcomes. Finally, in Section VI, we derive some tasions.

[I. A HISTORY OF TECHNOLOGICAL REVOLUTIONS AND EMPLOYMENT

The concern over technological unemployment is hardly eneghenomenon.
Throughout history, the process of creative destructioligwing technolog-
ical inventions, has created enormous wealth, but alsogimrededisruptions.
As stressed by Schumpeter (1962), it was not the lack of thweeideas that

4An exception is Goost al. (2009).



set the boundaries for economic development, but ratheegaolsocial and
economic interests promoting the technological status dos is nicely il-
lustrated by the example of William Lee, inventing the siagkirame knitting
machine in 1589, hoping that it would relieve workers of h&ndting. Seek-
ing patent protection for his invention, he travelled to don where he had
rented a building for his machine to be viewed by Queen E&#alh. To his
disappointment, the Queen was more concerned with the gmplat impact
of his invention and refused to grant him a patent, claimiad:t“Thou aimest
high, Master Lee. Consider thou what the invention couldadmy poor sub-
jects. It would assuredly bring to them ruin by deprivingrthef employment,
thus making them beggars” (cited in Acemoglu and Robinsf6h22p. 182f).
Most likely the Queen's concern was a manifestation of thedrs' guilds fear
that the invention would make the skills of its artisan merslmbsoleté. The
guilds' opposition was indeed so intense that William Led taleave Britain.

That guilds systematically tried to weaken market forceagggegators to
maintain the technological status quo is persuasivelyettduwy Kellenbenz
(1974, p. 243), stating that “guilds defended the interestteir members
against outsiders, and these included the inventors whhb,their new equip-
ment and techniques, threatened to disturb their membeosioenic status®’
As pointed out by Mokyr (1998, p. 11): “Unless all individsadccept the
“verdict” of the market outcome, the decision whether to@dm innovation
is likely to be resisted by losers through non-market meismarand political
activism.” Workers can thus be expected to resist new tdolgres, insofar that
they make their skills obsolete and irreversibly reducér evgoected earnings.
The balance between job conservation and technologicgrese therefore, to
a large extent, re ects the balance of power in society, and gains from
technological progress are being distributed.

The British Industrial Revolution illustrates this poinvidly. While still
widely present on the Continent, the craft guild in Britaedh by the time of

SThe term artisan refers to a craftsman who engages in theegmtiduction process of a
good, containing almost no division of labour. By guild weanen association of artisans that
control the practice of their craft in a particular town.

5There is an ongoing debate about the technological roleeofjtlilds. Epstein (1998), for
example, has argued that they ful lled an important roléhia intergenerational transmission of
knowledge. Yet there is no immediate contradiction betwseh a role and their conservative
stand on technological progress: there are clear examppslds restraining the diffusion of
inventions (see, for example, Ogilvie, 2004).



the Glorious Revolution of 1688, declined and lost most sfpblitical clout
(Nef, 1957, pp. 26 and 32). With Parliamentary supremacgbéished over
the Crown, legislation was passed in 1769 making the ddg&irucf machinery
punishable by death (Mokyr, 1990, p. 257). To be sure, theestill resistance
to mechanisation. The “Luddite” riots between 1811 and 18&6e partly a
manifestation of the fear of technological change amondersras Parliament
revoked a 1551 law prohibiting the use of gig mills in the wouokhing trade.
The British government however took an increasingly staawwon groups
attempting to halt technological progress and deployedd®men against the
rioters (Mantoux, 2006, p. 403-8). The sentiment of the gowveent towards
the destruction of machinery was explained by a resolutiassed after the
Lancashire riots of 1779, stating that: “The sole cause e&griots was the
new machines employed in cotton manufacture; the counttyitistanding
has greatly bene ted from their erection [and] destroyihgr in this country
would only be the means of transferring them to another [to the detriment
of the trade of Britain” (cited in Mantoux, 2006, p. 403).

There are at least two possible explanations for the shéttitudes towards
technological progress. First, after Parliamentary smaiey was established
over the Crown, the property owning classes became pdhtidaminant in
Britain (North and Weingast, 1989). Because the diffusibveoious manufac-
turing technologies did not impose a risk to the value ofrthssets, and some
property owners stood to bene t from the export of manufeetiugoods, the
artisans simply did not have the political power to représsit. Second, in-
ventors, consumers and unskilled factory workers largehelted from mech-
anisation (Mokyr, 1990, p. 256 and 258). It has even beenrearthat, despite
the employment concerns over mechanisation, unskilletevethave been the
greatest bene ciaries of the Industrial Revolution (Cla2R08)! While there

"Various estimations of the living standards of workers iitd8n during the industrialisation
exist in the literature. For example, Clark (2008) nds thedl wages over the period 1760 to
1860 rose faster tha@pp per capita. Further evidence provided by Lindert and Wiikan
(1983) even suggests that real wages nearly doubled betl®®and 1850. Feinstein (1998),
on the other hand, nds a much more moderate increase, wihage working-class living
standards improving by less than 15 percent between 1770&r@ Finally, Allen (2009a)
nds that over the rst half of the nineteenth century, thakeiage stagnated while output per
worker expanded. After the mid nineteenth century, howeeat wages began to grow in line
with productivity. While this implies that capital ownersve the greatest bene ciaries of the
Industrial Revolution, there is at the same time consermatsverage living standards largely
improved.



is contradictory evidence suggesting that capital ownatmily accumulated
a growing share of national income (Allen, 2009a), theregigadly evidence
of growing real wages (Lindert and Williamson, 1983; Feanst 1998). This
implies that although manufacturing technologies madesitiés of artisans
obsolete, gains from technological progress were didiidbin a manner that
gradually bene ted a growing share of the labour fofce.

An important feature of nineteenth century manufacturgxhhologies is
that they were largely “deskilling” +e. they substituted for skills through the
simpli cation of tasks (Braverman, 1974; Hounshell, 198&mes and Skinner,
1985; Goldin and Katz, 1998). The deskilling process o@las the factory
system began to displace the artisan shop, and it picked cg g produc-
tion increasingly mechanized with the adoption of steam gro{&oldin and
Sokoloff, 1982; Atacket al., 2008). Work that had previously been performed
by artisans was now decomposed into smaller, highly spsetl sequences,
requiring less skill, but more workers, to perfofmSome innovations were
even designed to be deskilling. For example, Eli Whitneyicager of inter-
changeable parts, described the objective of this techyahs “to substitute
correct and effective operations of machinery for the skithe artist which is
acquired only by long practice and experience; a speciekilbfaich is not
possessed in this country to any considerable extent” (kalka 1962, p. 22).

Together with developments in continuous- ow productienabling work-
ers to be stationary while different tasks were moved to thiewas identical in-
terchangeable parts that allowed complex products to rdded from mass
produced individual components by using highly specidlisechine tools to

8The term skill is associated with higher levels of educatadility, or job training. Follow-
ing Goldin and Katz (1998), we refer to technology-skill apital-skill complementarity when
a new technology or physical capital complements skillbédla relative to unskilled workers.

9The production of plows nicely illustrates the differenbesween the artisan shop and the
factory. In one artisan shop, two men spent 118 man-hourgudsammers, anvils, chisels,
hatchets, axes, mallets, shaves and augers in 11 distiecatagms to produce a plow. By
contrast, a mechanized plow factory employed 52 workerfopaing 97 distinct tasks, of
which 72 were assisted by steam power, to produce a plow ir3jids man-hours. The degree
of specialization was even greater in the production of seufiite muslin shirts. In the artisan
shop, one worker spent 1439 hours performing 25 differeskistéo produce 144 shirts. In the
factory, it took 188 man-hours to produce the same quarmtitgaging 230 different workers
performing 39 different tasks, of which more than half regqdisteam power. The workers
involved included cutters, turners and trimmers, as weibemmen and forewomen, inspectors,
errand boys, an engineer, a reman, and a watchnvaDepartment of Labor, 1899).



a sequence of operatioHs.Yet while the rst assembly-line was documented
in 1804, it was not until the late nineteenth century thatticmous- ow pro-
cesses started to be adopted on a larger scale, which emabpegations such
as the Ford Motor Company to manufacture the T-Ford at a grftty low
price for it to become the people's vehicle (Mokyr, 1990, 7L Crucially,
the new assembly line introduced by Ford in 1913 was spelty cesigned for
machinery to be operated by unskilled workers (Hounsh8851 p. 239). Fur-
thermore, what had previously been a one-man job was tumedi29-man
worker operation, reducing the overall work time by 34 pat¢8right, 1958).
The example of the Ford Motor Company thus underlines themgépattern
observed in the nineteenth century, with physical capitaliging a relative
complement to unskilled labour, while substituting foratetely skilled arti-
sans (James and Skinner, 1985; Louis and Paterson, 1988nBred Philips,
1986; Atack.et al, 2004)! Hence, as pointed out by Acemoglu (2002, p. 7):
“the idea that technological advances favor more skilledkens is a twentieth
century phenomenon.” The conventional wisdom among ecanbistorians,
in other words, suggests a discontinuity between the reméiteand twentieth
century in the impact of capital deepening on the relativealed for skilled
labour.

The modern pattern of capital-skill complementarity gr@atjuemerged in
the late nineteenth century, as manufacturing productidtes to increasingly
mechanised assembly lines. This shift can be traced to thelsio electricity
from steam and water-power which, in combination with combus-process

0These machines were sequentially implemented until theymtion process was com-
pleted. Over time, such machines became much cheapewediatskilled labor. As a result,
production became much more capital intensive (Hounsheds).

1williamson and Lindert (1980), on the other hand, nd a rislatise in wage premium of
skilled labour over the period 1820 to 1860, which they paattribute to capital deepening.
Their claim of growing wage inequality over this period haswever, been challenged (Margo,
2000). Yet seen over the long-run, a more re ned explandtidhat the manufacturing share
of the labour force in the nineteenth century hollowed oliisTs suggested by recent ndings,
revealing a decline of middle-skill artisan jobs in favofiboth high-skill white collar workers
and low-skill operatives (Gray, 2013; Katz and Margo, 201R)rthermore, even if the share
of operatives was increasing due to organizational charigeérvmanufacturing and overall
manufacturing growth, it does not follow that the share ofkilied labor was rising in the
aggregate economy, because some of the growth in the shaeodtives may have come
at the expense of a decrease in the share of workers empleyed-akilled farm workers in
agriculture (Katz and Margo, 2013). Nevertheless, thidence is consistent with the literature
showing that relatively skilled artisans were replaced bgkilled factory workers, suggesting
that technological change in manufacturing was deskilling



and batch production methods, reduced the demand for lewskilanual work-
ers in many hauling, conveying, and assembly tasks, butased the demand
for skills (Goldin and Katz, 1998). In short, while factorgsmbly lines, with
their extreme division of labour, had required vast quagiof human opera-
tives, electri cation allowed many stages of the produetfrocess to be au-
tomated, which in turn increased the demand for relativkijesl blue-collar
production workers to operate the machinery. In additidecte cation con-
tributed to a growing share of white-collar nonproducticorkers (Goldin and
Katz, 1998). Over the course of the nineteenth centurybbskenents became
larger in size as steam and water power technologies imgradewing them
to adopt powered machinery to realize productivity gaimsulgh the combina-
tion of enhanced division of labour and higher capital istgn(Atack, et al.,,
2008&). Furthermore, the transport revolution lowered costshgd@ng goods
domestically and internationally as infrastructure sgraad improved (Atack,
et al, 2008). The market for artisan goods early on had largely been med
to the immediate surrounding area because transport cestshigh relative to
the value of the goods produced. With the transport revattiowever, market
size expanded, thereby eroding local monopoly power, wini¢tarn increased
competition and compelled rms to raise productivity thghumechanisation.
As establishments became larger and served geographespainded markets,
managerial tasks increased in number and complexity, iegunore manage-
rial and clerking employees (Chandler, 1977). This patteas, by the turn of
the twentieth century, reinforced by electri cation, whinot only contributed
to a growing share of relatively skilled blue-collar labdowt also increased the
demand for white-collar workers (Goldin and Katz, 1998)pwénded to have
higher educational attainment (Allen, 200%).

Since electri cation, the story of the twentieth centursheen the race be-
tween education and technology (Goldin and Katz, 2009). d$kigh school
movement coincided with the rst industrial revolution dfe of ce (Goldin
and Katz, 1995). While the typewriter was invented in thes3@ was not in-
troduced in the of ce until the early twentieth century, whi¢ entered a wave

?Most likely, the growing share of white-collar workers irased the element of human
interaction in employment. Notably, Michaeks, al. (2013) nd that the increase in the em-
ployment share of interactive occupations, going hand imdhvgith an increase in their relative
wage bill share, was particularly strong between 1880 ar8D,1@hich is a period of rapid
change in communication and transport technology.
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of mechanisation, with dictaphones, calculators, mimeochimes, address ma-
chines, and the predecessor of the computer — the keypurestigd, 1986;
Cortada, 2000). Importantly, these of ce machines redubedcost of inform-
ation processing tasks and increased the demand for thdeomptary factor —
i.e. educated of ce workers. Yet the increased supply of edutatee work-
ers, following the high school movement, was associateld avgharp decline
in the wage premium of clerking occupations relative to picithn workers
(Goldin and Katz, 1995). This was, however, not the resutteskilling tech-
nological change. Clerking workers were indeed relatieglycated. Rather, it
was the result of the supply of educated workers outpaciegé&mand for their
skills, leading educational wage differentials to compres

While educational wage differentials in the narrowed from 1915 to 1980
(Goldin and Katz, 2009), both educational wage differdsitend overall wage
inequality have increased sharply since the 1980s in a nuwibeountries
(Krueger, 1993; Murphyet al., 1998; Atkinson, 2008; Goldin and Katz, 2009).
Although there are clearly several variables at work, cossse is broad that
this can be ascribed to an acceleration in capital-skill giementarity, driven
by the adoption of computers and information technologyéger, 1993; Au-
tor, et al, 1998; Bresnaharet al., 2002). What is commonly referred to as the
Computer Revolution began with the rst commercial usesahputers around
1960 and continued through the development of the Intenmétteacommerce
in the 1990s. As the cost per computation declined at an &awesage of 37
percent between 1945 and 1980 (Nordhaus, 2007), telephmsrators were
made redundant, the rst industrial robot was introducedGsneral Motors
in the 1960s, and in the 1970s airline reservations systedhthke way in self-
service technology (Gordon, 2012). During the 1980s and498omputing
costs declined even more rapidly, on average by 64 perceryepe, accompa-
nied by a surge in computational power (Nordhaus, 2692 the same time,
bar-code scanners and cash machines were spreading dwassdal and -
nancial industries, and the rst personal computers wetredtuced in the early
1980s, with their word processing and spreadsheet furegbminating copy
typist occupations and allowing repetitive calculatioode automated (Gor-
don, 2012). This substitution for labour marks a further amant reversal.

3Computer power even increased 18 percent faster on annsa than predicted by
Moore's Law, implying a doubling every two years (Nordha2@07).
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The early twentieth century of ce machines increased theal®d for clerking
workers (Chandler, 1977; Goldin and Katz, 1995). In a simt@anner, com-
puterisation augments demand for such tasks, but it alsoifsethem to be
automated (Autoret al,, 2003).

The Computer Revolution can go some way in explaining thevgngwage
inequality of the past decades. For example, Krueger (19@3) that work-
ers using a computer earn roughly earn 10 to 15 percent manedtners, but
also that computer use accounts for a substantial shareeohthease in the
rate of return to education. In addition, more recent stdid that computers
have caused a shift in the occupational structure of theulabwrket. Autor
and Dorn (2013), for example, show that as computerisatiodes wages for
labour performing routine tasks, workers will reallocdteit labour supply to
relatively low-skill service occupations. More speci balbetween 1980 and
2005, the share afs labour hours in service occupations grew by 30 percent
after having been at or declining in the three prior decadesrthermore, net
changes inus employment were U-shaped in skill level, meaning that the lo
est and highest job-skill quartile expanded sharply wilhtree employment
declines in the middle of the distribution.

The expansion in high-skill employment can be explainedhwgy falling
price of carrying out routine tasks by means of computerschvbomplements
more abstract and creative services. Seen from a productiation perspec-
tive, an outward shift in the supply of routine informatibmguts increases the
marginal productivity of workers they are demanded by. Famneple, text and
data mining has improved the quality of legal research astamih access to
market information has improved the ef ciency of managledtecision-making
—i.e. tasks performed by skilled workers at the higher end of ticenme dis-
tribution. The result has been an increasingly polarisedua market, with
growing employment in high-income cognitive jobs and lowoeme manual
occupations, accompanied by a hollowing-out of middlesme routine jobs.
This is a pattern that is not unique to the and equally applies to a number of
developed economies (Goaes,al., 2009)*

4While there is broad consensus that computers substitiativgorkers in routine-intensive
tasks has driven labour market polarisation over the pastdis, there are, indeed, alternative
explanations. For example, technological advances in atimghave dramatically lowered the
cost of leaving information-based tasks to foreign wodss{tlensen and Kletzer, 2005; Blinder,
2009; Jensen and Kletzer, 2010; Oldenski, 2012; Blinderkameger, 2013). The decline in
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How technological progress in the twenty- rst century viiipact on labour
market outcomes remains to be seen. Throughout histohnodagical progress
has vastly shifted the composition of employment, from @agture and the
artisan shop, to manufacturing and clerking, to service rmadagement oc-
cupations. Yet the concern over technological unemployrhes proven to
be exaggerated. The obvious reason why this concern has atetiatised
relates to Ricardo's famous chapter on machinery, whiclyssig that labour-
saving technology reduces the demand for undifferentiatsabir, thus leading
to technological unemployment (Ricardo, 1819). As ecorstsrhave long un-
derstood, however, an invention that replaces workers byhmas will have
effects on all product and factor markets. An increase ireffeency of pro-
duction which reduces the price of one good, will increas# mecome and
thus increase demand for other goods. Hence, in short, désdinal progress
has two competing effects on employment (Aghion and How@94). First, as
technology substitutes for labour, there is a destructif@ce requiring workers
to reallocate their labour supply; and second, there isdpaalisation effect, as
more companies enter industries where productivity idikelly high, leading
employment in those industries to expand.

Although the capitalisation effect has been predominasiiohically, our
discovery of means of economising the use of labour can putre pace at
which we can nd new uses for labour, as Keynes (1933) poiotgd The rea-
son why human labour has prevailed relates to its abilitydimpa and acquire
new skills by means of education (Goldin and Katz, 2009).aéstomputerisa-
tion enters more cognitive domains this will become indreglg challenging
(Brynjolfsson and McAfee, 2011). Recent empirical ndirgye therefore par-
ticularly concerning. For example, Beaudey,al. (2013) document a decline
in the demand for skill over the past decade, even as theysopplorkers with
higher education has continued to grow. They show that biglted work-
ers have moved down the occupational ladder, taking on jaldgibnally per-
formed by low-skilled workers, pushing low-skilled workezven further down
the occupational ladder and, to some extent, even out oitimul force. This

the routine-intensity of employment is thus likely to resubm a combination of offshoring
and automation. Furthermore, there is evidence suggesi@gnprovements in transport and
communication technology have augmented occupationdvimgphuman interaction, span-
ning across both cognitive and manual tasks (Michaalg|., 2013). These explanations are
nevertheless equally related to advance in computing amtmemications technology.
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raises questions about: (a) the ability of human labour totiwé race against
technology by means of education; and (b) the potentiaingxdetechnologi-

cal unemployment, as an increasing pace of technologiogress will cause
higher job turnover, resulting in a higher natural rate oémployment (Lucas
and Prescott, 1974; Davis and Haltiwanger, 1992; Pissark@®0). While the
present study is limited to examining the destruction eftdctechnology, it

nevertheless provides a useful indication of the job grawtiuired to counter-
balance the jobs at risk over the next decades.

[1l. THE TECHNOLOGICAL REVOLUTIONS OF THE TWENTYFIRST CENTURY

The secular price decline in the real cost of computing heated vast eco-
nomic incentives for employers to substitute labour for pater capitaft® Yet
the tasks computers are able to perform ultimately depeoa tige ability of
a programmer to write a set of procedures or rules that apiptefy direct the
technology in each possible contingency. Computers welliéfore be relatively
productive to human labour when a problem can be speci edtharsense that
the criteria for success are quanti able and can readilyadéuated (Acemoglu
and Autor, 2011). The extent of job computerisation willgHe determined
by technological advances that allow engineering problearse suf ciently
speci ed, which sets the boundaries for the scope of conmmatigon. In this
section, we examine the extent of tasks computer-contreligiipment can be
expected to perform over the next decades. Doing so, we focuslvances
in elds related to Machine LearningvL), including Data Mining, Machine
Vision, Computational Statistics and other sub- elds oti&ial Intelligence
(A1), in which efforts are explicitly dedicated to the develagrhof algorithms
that allow cognitive tasks to be automated. In addition, wan@ne the ap-
plication of ML technologies in Mobile Robotics/R), and thus the extent of
computerisation in manual tasks.

Our analysis builds on the task categorisation of Autbgl. (2003), which
distinguishes between workplace tasks using a two-by-tatriry with routine
versus non-routine tasks on one axis, and manual versu#tigegasks on the
other. In short, routine tasks are de ned as tasks thatvo#gplicit rules that

SWe refer to computer capital as accumulated computers ampter-controlled equip-
ment by means of capital deepening.
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can be accomplished by machines, while non-routine tagkaarsuf ciently
well understood to be speci ed in computer code. Each ofdéhesk cate-
gories can, in turn, be of either manual or cognitive nature ~they relate to
physical labour or knowledge work. Historically, compugation has largely
been con ned to manual and cognitive routine tasks invavaxplicit rule-
based activities (Autor and Dorn, 2013; Goesal,, 2009). Following recent
technological advances, however, computerisation is mpoessling to domains
commonly de ned as non-routine. The rapid pace at whichdals&t were de-
ned as non-routine only a decade ago have now become comgaliée is
illustrated by Autorget al. (2003), asserting that: “Navigating a car through city
traf c or deciphering the scrawled handwriting on a perdacteeck — minor
undertakings for most adults — are not routine tasks by ounitcen.” Today,
the problems of navigating a car and deciphering handwriire suf ciently
well understood that many related tasks can be speci ed impeger code and
automated (Veregt al,, 2011; Pl6tz and Fink, 2009).

Recent technological breakthroughs are, in large partfaeéorts to turn
non-routine tasks into well-de ned problems. De ning symioblems is helped
by the provision of relevant data: this is highlighted in tdase of handwriting
recognition by Pl6tz and Fink (2009). The success of an dlgarfor hand-
writing recognition is dif cult to quantify without data ttest on — in particular,
determining whether an algorithm performs well for differetyles of writ-
ing requires data containing a variety of such styles. Thatlata is required
to specify the many contingencies a technology must mamageder to form
an adequate substitute for human labour. With data, obgatid quanti able
measures of the success of an algorithm can be produced waildithe contin-
ual improvement of its performance relative to humans.

As such, technological progress has been aided by the rpcedtction
of increasingly large and complex datasets, known as big'8dfor instance,
with a growing corpus of human-translated digitalised ,tétxe success of a
machine translator can now be judged by its accuracy in demiag observed
translations. Data from United Nations documents, whiehtanslated by hu-

predictions by Cisco Systems suggest that the Internet ira2016 will be around 1
zettabyte { 10?! bytes) (Cisco, 2012). In comparison, the information cimad in all books
worldwide is about 480 terabyteS ( 10 bytes), and a text transcript of all the words ever
spoken by humans would represent about 5 exab$tesl(0'® bytes) (c Berkeley School of
Information, 2003).
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man experts into six languages, allow Google Translate toitmoand improve
the performance of different machine translation algongh{Tanner, 2007).

Further,mL algorithms can discover unexpected similarities betwddn o
and new data, aiding the computerisation of tasks for whigllbta has newly
become available. As a result, computerisation is no lorcgerned to rou-
tine tasks that can be written as rule-based software q)dne is spreading
to every non-routine task where big data becomes avail@vigjolfsson and
McAfee, 2011). In this section, we examine the extent of keittomputerisa-
tion beyond routine tasks.

[lILA.  Computerisation in non-routine cognitive tasks

With the availability of big data, a wide range of non-roeticognitive tasks
are becoming computerisable. That is, further to the géma@ovement in
technological progress due to big data, algorithms for bhigdre rapidly enter-
ing domains reliant upon storing or accessing informatidme use of big data
is afforded by one of the chief comparative advantages ofptaens relative
to human labor: scalability. Little evidence is requiredd@monstrate that, in
performing the task of laborious computation, networks athines scale bet-
ter than human labour (Campbell-Kelly, 2009). As such, cotags can better
manage the large calculations required in using large etsagL algorithms
running on computers are now, in many cases, better abletégtdetterns in
big data than humans.

Computerisation of cognitive tasks is also aided by anatbez compara-
tive advantage of algorithms: their absence of some humasebi An algo-
rithm can be designed to ruthlessly satisfy the small rarfigasks it is given.
Humans, in contrast, must ful Il a range of tasks unrela@thieir occupation,
such as sleeping, necessitating occasional sacri ceseim titccupational per-
formance (Kahnemaret al, 1982). The additional constraints under which
humans must operate manifest themselves as biases. Qoassidgample of
human bias: Danzigeet al. (2011) demonstrate that experienced Israeli judges
are substantially more generous in their rulings followgnignch break. It can
thus be argued that many roles involving decision-makinll lvéine t from
impartial algorithmic solutions.

Fraud detection is a task that requires both impartial dacisiaking and
the ability to detect trends in big data. As such, this taskow almost com-
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pletely automated (Phuat al., 2010). In a similar manner, the comparative
advantages of computers are likely to change the nature i agoss a wide
range of industries and occupations.

In health care, diagnostics tasks are already being comgede Oncolo-
gists at Memorial Sloan-Kettering Cancer Center are, fangxe, usingesm's
Watson computer to provide chronic care and cancer tredtoiagnostics.
Knowledge from 600,000 medical evidence reports, 1.5 amipatient records
and clinical trials, and two million pages of text from mealipurnals, are used
for benchmarking and pattern recognition purposes. Thasvalthe computer
to compare each patient's individual symptoms, genetasilyy and medica-
tion history, etc., to diagnose and develop a treatment piiém the highest
probability of success (Cohn, 2013).

In addition, computerisation is entering the domains oélemd nancial
services. Sophisticated algorithms are gradually takimg mumber of tasks
performed by paralegals, contract and patent lawyers (M&arR011). More
speci cally, law rms now rely on computers that can scanubkands of legal
briefs and precedents to assist in pre-trial research. duéptly cited exam-
ple is Symantec's Clearwell system, which uses languaglysiado identify
general concepts in documents, can present the resultsigallp, and proved
capable of analysing and sorting more than 570,000 docwmertivo days
(Markoff, 2011).

Furthermore, the improvement of sensing technology hasersadsor data
one of the most prominent sources of big data (Ackerman an#dzGu2011).
Sensor data is often coupled with new fault- and anomaly-detection algo-
rithms to render many tasks computerisable. A broad clasgahples can be
found in condition monitoring and novelty detection, widthnology substi-
tuting for closed-circuitrv (CCTV) operators, workers examining equipment
defects, and clinical staff responsible for monitoring $tete of patients in in-
tensive care. Here, the fact that computers lack humandiasé# great value:
algorithms are free of irrational bias, and their vigilameed not be interrupted
by rest breaks or lapses of concentration. Following thémaeg costs of digi-
tal sensing and actuatiomL. approaches have successfully addressed condition
monitoring applications ranging from batteries (Saétaal., 2007), to aircraft
engines (Kinget al, 2009), water quality (Osbornet al,, 2012) and intensive
care unitsicus) (Clifford and Clifton, 2012; Cliftonet al, 2012). Sensors can

17



equally be placed on trucks and pallets to improve compasigply chain
management, and used to measure the moisture in a eld ofdwmjrack the
ow of water through utility pipes. This allows for automatmeter reading,
eliminating the need for personnel to gather such inforomatiFor example,
the cities of Doha, S&o Paulo, and Belijing use sensors ors ppenps, and
other water infrastructure to monitor conditions and managter loss, reduc-
ing leaks by 40 to 50 percent. In the near future, it will begdole to place inex-
pensive sensors on light poles, sidewalks, and other pphdjgerty to capture
sound and images, likely reducing the number of workerswndaforcement
(MG, 2013).

Advances in user interfaces also enable computers to rdsgioectly to
a wider range of human requests, thus augmenting the worlgbfyhskilled
labour, while allowing some types of jobs to become fullycsmiated. For ex-
ample, Apple's Siri and Google Now rely on natural user ifstees to recognise
spoken words, interpret their meanings, and act on thenrdioggy. More-
over, a company called SmartAction now provides call corapsétion solu-
tions that useiL technology and advanced speech recognition to improve upon
conventional interactive voice response systems, raglisbst savings of 60 to
80 percent over an outsourced call center consisting of huatzour (CAA,
2012). Even education, one of the most labour intensiveosgctvill most
likely be signi cantly impacted by improved user interfacand algorithms
building upon big data. The recent growthnmoocs (Massive Open Online
Courses) has begun to generate large datasets detailingtbhdents interact
on forums, their diligence in completing assignments aeding lectures, and
their ultimate grades (Simonite, 2013; Bresletval., 2013). Such information,
together with improved user interfaces, will allow far. algorithms that serve
as interactive tutors, with teaching and assessment gieatstatistically cali-
brated to match individual student needs (Woolf, 2010). d&tp analysis will
also allow for more effective predictions of student parfance, and for their
suitability for post-graduation occupations. These tedbgies can equally be
implemented in recruitment, most likely resulting in theeaimlining of human
resource §iR) departments.

Occupations that require subtle judgement are also inciggsusceptible
to computerisation. To many such tasks, the unbiased deaisaking of an al-
gorithm represents a comparative advantage over humaatoperin the most
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challenging or critical applications, as iaus, algorithmic recommendations
may serve as inputs to human operators; in other circumssaradgorithms
will themselves be responsible for appropriate decisi@king. In the nan-
cial sector, such automated decision-making has playetedonquite some
time. Al algorithms are able to process a greater number of nanaiaance-
ments, press releases, and other information than any htrader, and then
act faster upon them (Mims, 2010). Services like Future adwvsimilarly use
Al to offer personalised nancial advice at larger scale andelocost. Even
the work of software engineers may soon largely be commaele. For ex-
ample, advances imL allow a programmer to leave complex parameter and
design choices to be appropriately optimised by an algor{tdoos, 2012). Al-
gorithms can further automatically detect bugs in softw&tangal and Lam,
2002; Livshits and Zimmermann, 2005; Kirat al., 2008), with a reliability
that humans are unlikely to match. Big databases of codeéitsothe eventual
prospect of algorithms that learn how to write programs tis8especi cations
provided by a human. Such an approach is likely to eventuaprove upon
human programmers, in the same way that human-written deragventually
proved inferior to automatically optimised compilers. Agaithm can bet-
ter keep the whole of a program in working memory, and is nostrained to
human-intelligible code, allowing for holistic solutiotisat might never occur
to a human. Such algorithmic improvements over human ju@égeiare likely
to become increasingly common.

Although the extent of these developments remains to be ssgmates by
MGI (2013) suggests that sophisticated algorithms coubssiute for approx-
imately 140 million full-time knowledge workers worldwideHence, while
technological progress throughout economic history hagelg been con ned
to the mechanisation of manual tasks, requiring physidaiug technological
progress in the twenty- rst century can be expected to doute to a wide
range of cognitive tasks, which, until now, have largely agmed a human
domain. Of course, many occupations being affected by tbegelopments
are still far from fully computerisable, meaning that thenguterisation of
some tasks will simply free-up time for human labour to perf@ther tasks.
Nonetheless, the trend is clear: computers increasinglyesige human labour
in a wide range of cognitive tasks (Brynjolfsson and McAf2@11).
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[11.B. Computerisation in non-routine manual tasks

Mobile robotics provides a means of directly leveraging technologies to
aid the computerisation of a growing scope of manual taskse dontinued
technological development of robotic hardware is havingble impact upon
employment: over the past decades, industrial robots rekkenton the rou-
tine tasks of most operatives in manufacturing. Now, howewere advanced
robots are gaining enhanced sensors and manipulatorgjiraiohem to per-
form non-routine manual tasks. For example, General Etelosrs recently de-
veloped robots to climb and maintain wind turbines, and mexible surgical
robots with a greater range of motion will soon perform magyees of opera-
tions (Robotics-VO, 2013). In a similar manner, the comps&tion of logis-
tics is being aided by the increasing cost-effectivenegsgiily instrumented
and computerised cars. Mass-production vehicles, sucheaBlissan_EAF,
contain on-board computers and advanced telecommumcatjoipment that
render the car a potentially y-by-wire robéf. Advances in sensor technol-
ogy mean that vehicles are likely to soon be augmented wigm evore ad-
vanced suites of sensors. These will permit an algorithriigale controller to
monitor its environment to a degree that exceeds the cagedvf any human
driver: they have the ability to simultaneously look botiwards and back-
wards, can natively integrate came&®sandLIDAR data, and are not subject
to distraction. Algorithms are thus potentially safer anoreneffective drivers
than humans.

The big data provided by these improved sensors are offsphgions to
many of the engineering problems that had hindered rob@veldpment in
the past. In particular, the creation of detailed three disi@nal maps of road
networks has enabled autonomous vehicle navigation; nodably illustrated
by Google's use of large, specialised datasets collecteiisbyriverless cars
(Guizzo, 2011). It is now completely feasible to store repreaations of the
entire road network on-board a car, dramatically simphifythe navigation
problem. Algorithms that could perform navigation throoghthe changing
seasons, particularly after snowfall, have been viewed sigbatantial chal-
lenge. However, the big data approach can answer this biyngtacords from
the last time snow fell, against which the vehicle's currenvironment can

17A y-by-wire robot is a robot that is controllable by a rematemputer.
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be compared (Churchill and Newman, 201®). approaches have also been
developed to identify unprecedented changes to a partipidae of the road
network, such as roadworks (Mathibekt, al., 2012). This emerging tech-
nology will affect a variety of logistics jobs. Agriculturaehicles, forklifts
and cargo-handling vehicles are imminently automatalld,leospitals are al-
ready employing autonomous robots to transport food, pipggms and sam-
ples (Bloss, 2011). The computerisation of mining vehigteturther being
pursued by companies such as Rio Tinto, seeking to replédmeidan Aus-
tralian mine-sited®

With improved sensors, robots are capable of producing gyaaith higher
quality and reliability than human labour. For example, EillZ2, a Spanish
food processor, now uses robotics to pick up heads of letiuce a con-
veyor belt, rejecting heads that do not comply with compaapdards. This
is achieved by measuring their density and replacing thertherbelt (IFR,
2012a). Advanced sensors further allow robots to recograsterns. Baxter, a
22,000usD general-purpose robot, provides a well-known example.rbohet
features an.cD display screen displaying a pair of eyes that take on differ-
ent expressions depending on the situation. When the rebistiinstalled or
needs to learn a new pattern, no programming is required. manuworker
simply guides the robot arms through the motions that wilhbeded for the
task. Baxter then memorises these patterns and can comatrithiat it has un-
derstood its new instructions. While the physical exibjlof Baxter is limited
to performing simple operations such as picking up objeatsraoving them,
different standard attachments can be installed on its,aalesving Baxter to
perform a relatively broad scope of manual tasks at low ¢d&I( 2013).

Technological advances are contributing to decliningsiwstobotics. Over
the past decades, robot prices have fallen about 10 pernentby and are
expected to decline at an even faster pace in the near fuil@e, 2013). In-
dustrial robots, with features enabled by machine visioth laigh-precision
dexterity, which typically cost 100,000 to 150,008D, will be available for
50,000 to 75,00@sD in the next decade, with higher levels of intelligence
and additional capabilities (IFR, 2012b). Declining ropdtes will inevitably
place them within reach of more users. For example, in Cl@nmgloyers are

18Rio Tinto's computerisation efforts are advertised at #ttpvw. mineofthefuture.com.au.
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increasingly incentivised to substitute robots for lah@ag wages and living
standards are rising — Foxconn, a Chinese contract manuéat¢hat employs
1.2 million workers, is now investing in robots to assemhieducts such as
the Apple iPhone (Markoff, 2012). According to the Inteioatl Federation
of Robotics, robot sales in China grew by more than 50 peiioe2211 and are
expected to increase further. Globally, industrial roladés reached a record
166,000 units in 2011, a 40 percent year-on-year incre&$g, @012b). Most
likely, there will be even faster growth ahead as low-prigesheral-purpose
models, such as Baxter, are adopted in simple manufactandgervice work.
Expanding technological capabilities and declining ceslisnake entirely

new uses for robots possible. Robots will likely continugetike on an increas-
ing set of manual tasks in manufacturing, packing, constncmaintenance,
and agriculture. In addition, robots are already perfogmmany simple ser-
vice tasks such as vacuuming, mopping, lawn mowing, ancigaktaning —
the market for personal and household service robots isiggolay about 20
percent annually (MGI, 2013). Meanwhile, commercial segwiobots are now
able to perform more complex tasks in food preparation,theare, commer-
cial cleaning, and elderly care (Robotics-VO, 2013). Atalosts decline and
technological capabilities expand, robots can thus bea&de¢o gradually sub-
stitute for labour in a wide range of low-wage service octigos, where most
usjob growth has occurred over the past decades (Autor and, ROWB). This
means that many low-wage manual jobs that have been préyiprusected
from computerisation could diminish over time.

[1I.C. The task model revisited

The task model of Autoret al. (2003) has delivered intuitive and accurate
predictions in that: (a) computers are more substitutadnidnéiman labour in
routine relative to non-routine tasks; and (b) a greateansity of routine in-
puts increases the marginal productivity of non-routineuils. Accordingly,
computers have served as a substitute for labour for marnineotasks, while
exhibiting strong complementarities with labour perfangncognitive non-rou-
tine tasks® Yet the premises about what computers do have recently degan
Computer capital can now equally substitute for a wide ramiggasks com-

1%The model does not predict any substantial substitutionoonptementarity with non-
routine manual tasks.
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monly de ned as non-routine (Brynjolfsson and McAfee, 2PIheaning that
the task model will not hold in predicting the impact of congrisation on
the task content of employment in the twenty- rst centuryhi® focusing on
the substitution effects of recent technological progressbuild on the task
model by deriving several factors that we expect will detaesrthe extent of
computerisation in non-routine tasks.

The task model assumes for tractability an aggregate, aonstturns-to-
scale, Cobb-Douglas production function of the form

1) Q=(Ls*+C)' Lys  2[01]

wherelL s andLys are susceptible and non-susceptible labor inputs@rsl
computer capital. Computer capital is supplied perfecthgtcally at market
price per ef ciency unit, where the market price is fallingogienously with
time due to technological progress. It further assumesnirgemaximizing
workers, with heterogeneous productivity endowments i sasceptible and
non-susceptible tasks. Their task supply will respondtiela$y to relative
wage levels, meaning that workers will reallocate theiplalsupply according
to their comparative advantage as in Roy (1951). With expgndomputa-
tional capabilities, resulting from technological advesicand a falling market
price of computing, workers in susceptible tasks will thaallocate to non-
susceptible tasks.

The above described simple model differs from the task motiéutor,
et al. (2003), in thatL ys is not con ned to routine labour inputs. This is be-
cause recent developmentsnm and MR, building upon big data, allow for
pattern recognition, and thus enable computer capitalgmasubstitute for
labour across a wide range of non-routine tasks. Yet sombifimiy engineer-
ing bottlenecks to computerisation persist. Beyond thestelmecks, however,
we argue that it is largely already technologically possiiol automate almost
any task, provided that suf cient amounts of data are g&ithéor pattern recog-
nition. Our model thus predicts that the pace at which theséemecks can be
overcome will determine the extent of computerisation mtihienty- rst cen-
tury.

Hence, in short, while the task model predicts that comguter labour
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substitution will be con ned to routine tasks, our modelgicgs that comput-
erisation can be extended to any non-routine task that isuigéect to any engi-
neering bottlenecks to computerisation. These bottlenduks set the bound-
aries for the computerisation of non-routine tasks. Drawipon themL and
MR literature, and a workshop held at the Oxford University iBegring Sci-
ences Department, we identify several engineering beitles; corresponding
to three task categories. According to these ndings, nasesptible labor in-
puts can be described as,

X
(2) Lns = Lemi + Lci + Lsii

i=1
whereLpy, Lc andLg, are labour inputs into perception and manipulation
tasks, creative intelligence tasks, and and social igeiice tasks.

We note that some related engineering bottlenecks can hallyaallevi-
ated by the simpli cation of tasks. One generic way of achiguhis is to re-
duce the variation between task iterations. As a protoafgicample, consider
the factory assembly line, turning the non-routine taskhefartisan shop into
repetitive routine tasks performed by unskilled factorykess. A more recent
example is the computerisation of non-routine manual tasknstruction.
On-site construction tasks typically demand a high degfesdaptability, so
as to accommodate work environments that are typicallgudaly laid out,
and vary according to weather. Prefabrication, in whichcibrestruction object
is partially assembled in a factory before being transpliwethe construction
site, provides a way of largely removing the requiremengfaptability. It al-
lows many construction tasks to be performed by robots ucaletrolled con-
ditions that eliminate task variability — a method that isdming increasingly
widespread, particularly in Japan (Barlow and Ozaki, 2Q@8ner and Bock,
2012). The extent of computerisation in the twenty- rst wem will thus partly
depend on innovative approaches to task restructurindnelinegmainder of this
section we examine the engineering bottlenecks relatdtetaliove mentioned
task categories, each in turn.

Perception and manipulation tasks. Robots are still unable to match the
depth and breadth of human perception. While basic geordénti cation is
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reasonably mature, enabled by the rapid development ofistogated sensors
and lasers, signi cant challenges remain for more complescgption tasks,
such as identifying objects and their properties in a clatteeld of view. As
such, tasks that relate to an unstructured work environgenimake jobs less
susceptible to computerisation. For example, most honeearastructured, re-
quiring the identi cation of a plurality of irregular objésand containing many
cluttered spaces which inhibit the mobility of wheeled alge Conversely, su-
permarkets, factories, warehouses, airports and hositale been designed
for large wheeled objects, making it easier for robots togete in perform-
ing non-routine manual tasks. Perception problems canegbherysometimes
be sidestepped by clever task design. For example, KivaBstacquired by
Amazon.com in 2012, solved the problem of warehouse navigaty simply
placing bar-code stickers on the oor, informing robotsluéir precise location
(Guizzo, 2008).

The dif culty of perception has rami cations for manipulah tasks, and,
in particular, the handling of irregular objects, for whidbots are yet to reach
human levels of aptitude. This has been evidenced in thda@went of robots
that interact with human objects and environments. Whileaades have been
made, solutions tend to be unreliable over the myriad sna@ihtions on a sin-
gle task, repeated thousands of times a day, that many apphs require. A
related challenge is failure recoveryi.e. identifying and rectifying the mis-
takes of the robot when it has, for example, dropped an abjdtanipula-
tion is also limited by the dif culties of planning out the gigence of actions
required to move an object from one place to another. Thexeyeir further
problems in designing manipulators that, like human linabe, soft, have com-
pliant dynamics and provide useful tactile feedback. Mastustrial manip-
ulation makes uses of workarounds to these challenges (Breival., 2010),
but these approaches are nonetheless limited to a narr@e &frtasks. The
main challenges to robotic computerisation, perceptiahraanipulation, thus
largely remain and are unlikely to be fully resolved in thetngecade or two
(Robotics-VO, 2013).

Creative intelligence tasks. The psychological processes underlying human
creativity are dif cult to specify. According to Boden (28] creativity is the
ability to come up with ideas or artifacts that are novel aaldiable. Ideas, in a

25



broader sense, include concepts, poems, musical congusisicienti ¢ theo-
ries, cooking recipes and jokes, whereas artifacts aretsgeich as paintings,
sculptures, machinery, and pottery. One process of ceadgas (and simi-
larly for artifacts) involves making unfamiliar combinaiis of familiar ideas,
requiring a rich store of knowledge. The challenge here isdsome reliable
means of arriving at combinations that “make sense.” Fonaprder to make a
subtle joke, for example, would require a database withrangss of knowledge
comparable to that of humans, and methods of benchmarkengltforithm's
subtlety.

In principle, such creativity is possible and some appreadb creativity
already exist in the literature. Duvenawdd,al. (2013) provide an example of
automating the core creative task required in order to perfstatistics, that
of designing models for data. As to artistic creativipasRON, a drawing-
program, has generated thousands of stylistically-siriila-drawings, which
have been exhibited in galleries worldwide. Furthermorayi® Cope'semi
software composes music in many different styles, rememsof speci ¢ hu-
man composers.

In these and many other applications, generating novelgtparticularly
dif cult. Instead, the principal obstacle to computerigioreativity is stating
our creative values suf ciently clearly that they can be@sted in an program
(Boden, 2003). Moreover, human values change over time ang across
cultures. Because creativity, by de nition, involves noiynovelty but value,
and because values are highly variable, it follows that memgyments about
creativity are rooted in disagreements about value. Thusn & we could
identify and encode our creative values, to enable the ctenpa inform and
monitor its own activities accordingly, there would stié bisagreement about
whether the computer appeared to be creative. In the abséregineering
solutions to overcome this problem, it seems unlikely tltatipations requiring
a high degree of creative intelligence will be automatedheriext decades.

Social intelligence tasks. Human social intelligence is important in a wide
range of work tasks, such as those involving negotiatiorsysesion and care.
To aid the computerisation of such tasks, active researbeirgy undertaken
within the elds of Affective Computing (Schereet al., 2010; Picard, 2010),
and Social Robotics (Ge, 2007; Broekeesal., 2009). While algorithms and
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robots can now reproduce some aspects of human socialanterathe real-
time recognition of natural human emotion remains a chgllenpproblem, and
the ability to respond intelligently to such inputs is evearendif cult. Even
simpli ed versions of typical social tasks prove dif culbf computers, as is
the case in which social interaction is reduced to pure t€ke social intelli-
gence of algorithms is partly captured by the Turing teshp@xing the ability
of a machine to communicate indistinguishably from an ddtuanan. Since
1990, the Loebner Prize, an annual Turing test competigarards prizes to
textual chat programmes that are considered to be the masardiike. In
each competition, a human judge simultaneously holds cteniased textual
interactions with both an algorithm and a human. Based omegonses, the
judge is to distinguish between the two. Sophisticatedrélyos have so far
failed to convince judges about their human resemblancés i$Hargely be-
cause there is much ‘common sense' information possessaaggns, which
is dif cult to articulate, that would need to be provided tgarithms if they are
to function in human social settings.

Whole brain emulation, the scanning, mapping and digitadi®f a hu-
man brain, is one possible approach to achieving this, betiiigently only a
theoretical technology. For brain emulation to become ap@mnal, additional
functional understanding is required to recognise wha datelevant, as well
as a roadmap of technologies needed to implement it. While saadmaps ex-
ist, present implementation estimates, under certaimgssons, suggest that
whole brain emulation is unlikely to become operationahiithe next decade
or two (Sandberg and Bostrom, 2008). When or if they do, hewdthe em-
ployment impact is likely to be vast (Hanson, 2001).

Hence, in short, while sophisticated algorithms and deyreknts inmMR,
building upon with big data, now allow many non-routine &d& be auto-
mated, occupa tions that involve complex perception andipnéation tasks,
creative intelligence tasks, and social intelligencegamsie unlikely to be sub-
stituted by computer capital over the next decade or two.probability of an
occupation being automated can thus be described as adnrdtihese task
characteristics. As suggested by Figure I, the low degreseahl intelligence
required by a dishwasher makes this occupation more stislesiat computer-
isation than a public relation specialist, for example. Wacped to examining
the susceptibility of jobs to computerisation as a functibthe above described
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non-susceptible task characteristics.

IV. MEASURING THE EMPLOYMENT IMPACT OF COMPUTERISATION

IV.A. Data sources and implementation strategy

To implement the above described methodology, we relg aweT, an online
service developed for thes Department of Labor. The 2010 version®@fNET
contains information on 903 detailed occupations, most kv correspond
closely to the Labor Department's Standard Occupationas€iication S0Q).
The 0 NET data was initially collected from labour market analysts] &as
since been regularly updated by surveys of each occupsiimrker population
and related experts, to provide up-to-date information ccupations as they
evolve over time. For our purposes, an important feature ofeT is that it
de nes the key features of an occupation as a standardisgchaasurable set
of variables, but also provides open-ended descriptiosp@di c tasks to each
occupation. This allows us to: (a) objectively rank occigreg according to
the mix of knowledge, skills, and abilities they requiredaib) subjectively
categorise them based on the variety of tasks they involve.

The closesoc correspondence ab NET allows us to link occupational
characteristics to 2010 Bureau of Labor Statistgissj employment and wage
data. While thedo NET occupational classi cation is somewhat more detailed,
distinguishing between Auditors and Accountants, for ex@nwe aggregate
these occupations to correspond to the six-digit 26@0@ system, for which
employment and wage gures are reported. To obtain uniQUEET vari-
ables corresponding to the six-digibc classi cation, we used the mean of
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the 0 NET aggregate. In addition, we exclude any six-dgjiiC occupations
for whicho NET data was missiné Doing so, we end up with a nal dataset
consisting of 702 occupations.

To assess the employment impact of the described techalodevel-
opments inML, the ideal experiment would provide two identical autarkic
economies, one facing the expanding technological capabilwe observe,
and a secular decline in the price of computerisation, aedother not. By
comparison, it would be straightforward to examine how cotapsation re-
shapes the occupational composition of the labour markethd absence of
this experiment, the second preferred option would be t@han the imple-
mentation strategy of Autoet al. (2003), and test a simple economic model
to predict how demand for workplace tasks responds to dpusats inML
and MR technology. However, because our paper is forward-logkimghe
sense that most of the described technological develognaeatyet to be im-
plemented across industries on a broader scale, this apiemot available for
our purposes.

Instead, our implementation strategy builds on the liteeexamining the
offshoring of information-based tasks to foreign worksjteonsisting of differ-
ent methodologies to rank and categorise occupations @iogoto their sus-
ceptibility to offshoring (Blinder, 2009; Jensen and Ketz22005, 2010). The
common denominator for these studies is that they rely oveT data in differ-
ent ways. While Blinder (2009) eyeballed tbeNET data on each occupation,
paying particular attention to the job description, tagis] work activities, to
assign an admittedly subjective two-digit index numberftdtwrability to each
occupation, Jensen and Kletzer (2005) created a purelgtblgeanking based
on standardised and measurablelET variables. Both approaches have obvi-
ous drawbacks. Subjective judgments are often not repécaid may result in
the researcher subconsciously rigging the data to confomrcertain set of be-
liefs. Objective rankings, on the other hand, are not sulpesuch drawbacks,
but are constrained by the reliability of the variables tir@tbeing used. At this
stage, it shall be noted that NET data was not gathered to speci cally mea-

20The missing occupations consist of “All Other” titles, repenting occupations with a
wide range of characteristics which do not tinto one of thetalledo NET-Sococcupations.
O NET data is not available for this type of title. We note thet employment for the 702
occupations we considered is 138.44 million. Hence ouryasimaéxcluded 4.628 million jobs,
equivalent to 3 percent of total employment.
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sure the offshorability or automatability of jobs. Accardly, Blinder (2009)
nds that past attempts to create objective offshorabitigkings usingp NET
data have yielded some questionable results, ranking iaveyel judges among
the most tradable occupations, while classifying occapatsuch as data entry
keyers, telephone operators, and billing clerks as viguadpossible to move
offshore.

To work around some of these drawbacks, we combine and bpdd the
two described approaches. First, together with a groupLofesearchers, we
subjectively hand-labelled 70 occupations, assigning dutbmatable, and O
if not. For our subjective assessments, we draw upon a wopkkkld at the
Oxford University Engineering Sciences Department, examgithe automata-
bility of a wide range of tasks. Our label assignments wesebtan eyeballing
the o NET tasks and job description of each occupation. This infoionaits
particular to each occupation, as opposed to standardisedsadifferent jobs.
The hand-labelling of the occupations was made by answeheagjuestion
“Can the tasks of this job be suf ciently speci ed, condiial on the availabil-
ity of big data, to be performed by state of the art computertiolled equip-
ment”. Thus, we only assigned a 1 to fully automatable octaps, where
we considered all tasks to be automatable. To the best ofrmawlkedge, we
considered the possibility of task simpli cation, possilallowing some cur-
rently non-automatable tasks to be automated. Labels vesigreed only to
the occupations about which we were most con dent.

Second, we use objective NET variables corresponding to the de ned
bottlenecks to computerisation. More speci cally, we améerested in vari-
ables describing the level of perception and manipulatoegtivity, and social
intelligence required to perform it. As reported in Tableve identi ed nine
variables that describe these attributes. These variades derived from the
O NET survey, where the respondents are given multiple scaldl,“wnpor-
tance” and “level” as the predominant pair. We rely on th@élérating which
corresponds to speci ¢ examples about the capabilitiesired of computer-
controlled equipment to perform the tasks of an occupatiéor. instance, in
relation to the attribute “Manual Dexterity”, low (levelpaesponds to “Screw
a light bulb into a light socket”; medium (level) is exempd by “Pack or-
anges in crates as quickly as possible”; high (level) is dlesd as “Perform
open-heart surgery with surgical instruments”. This giuesan indication of
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TABLE I. O NET variables that serve as indicators of bottlenecks to coerfsattion.

Computerisation O NET Variable O NET Description
bottleneck
Perception Finger The ability to make precisely coordinated movements of
and Dexterity the ngers of one or both hands to grasp, manipulate, or
Manipulation assemble very small objects.
Manual The ability to quickly move your hand, your hand together
Dexterity with your arm, or your two hands to grasp, manipulate, or

assemble objects.

Cramped Work Space, How often does this job require working in cramped work

Awkward Positions spaces that requires getting into awkward positions?
Creative Originality The ability to come up with unusual or clever é&eabout
Intelligence a given topic or situation, or to develop creative ways to

solve a problem.

Fine Arts Knowledge of theory and techniques required topmuse,
produce, and perform works of music, dance, visual arts,
drama, and sculpture.

Social Social Being aware of others' reactions and understanding why
Intelligence Perceptiveness they react as they do.
Negotiation Bringing others together and trying to rectnci
differences.
Persuasion Persuading others to change their minds oribehav

Assisting and Caring for Providing personal assistance, medical attention, emo-
Others tional support, or other personal care to others such as
coworkers, customers, or patients.

the level of “Manual Dexterity” computer-controlled eqmpnt would require
to perform a speci ¢ occupation. An exception is the “Cramhpeork space”
variable, which measures the frequency of unstructure#.wor

Hence, in short, by hand-labelling occupations, we worluadthe issue
thato NET data was not gathered to speci cally measure the autonieyadui
jobs in a similar manner to Blinder (2009). In addition, weigate some of the
subjective biases held by the researchers by using obgextiveT variables to
correct potential hand-labelling errors. The fact that aleel only 70 of the full
702 occupations, selecting those occupations whose cemigation label we
are highly con dent about, further reduces the risk of sabye bias affecting
our analysis. To develop an algorithm appropriate for taskt we turn to
probabilistic classi cation.
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IV.B. Classi cation method

We begin by examining the accuracy of our subjective assastsnof the au-
tomatability of 702 occupations. For classi cation, we dBp an algorithm

to provide the label probability given a previously unseentor of variables.

In the terminology of classi cation, the NET variables form deature vec-
tor, denotedk 2 R®. o NET hence supplies a complete dataset of 702 such
feature vectors. A computerisable label is termexbas denotedy 2 f 0; 1g.

For our problemy = 1 (true) implies that we hand-labelled as computerisable
the occupation described by the associated pineeT variables contained in

x 2 R°. Ourtraining datais D = (X;y), whereX 2 R’ ®is a matrix of
variables ands 2 f 0; 1g’° gives the associated labels. This dataset contains
information about how varies as a function of: as a hypothetical example,

it may be the case that, for all occupations for which> 50,y = 1. A
probabilistic classi cation algorithm exploits patteragistent in training data

to return the probability?(y =1 j x ; X;y) of a new, unlabelledest datum
with featuresx having class labgl =1.

We achieve probabilistic classi cation by introducing aelat function
f:x 7! R, known as adiscriminant function Given the value of the dis-
criminantf at a test poink , we assume that the probability for the class label
is given by the logistic

1

(3 P(yzljf):m;

andP(y =0 jf)=1 P(y =1jf). Forf >0,y =1 is more
probable thatyy = 0. For our applicationf can be thought of as a continuous-
valued "automatability’ variable: the higher its valueg tiigher the probability
of computerisation.

We test three different models for the discriminant funetib, using the
best performing for our further analysis. Firstly, logisor logit) regression,
which adopts a linear model fér, f (x) = w! x, where the un-known weights
w are often inferred by maximising their probability in ligbt the training
data. This simple model necessarily implies a simple mamoteelationship
between features and the probability of the class takingrécpéar value.
Richer models are provided yaussian process classi ef®asmussen and
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Williams, 2006). Such classi ers model the latent functiomvith a Gaussian
processP): a non-parametric probability distribution over functg

A GPis de ned as a distribution over the functiohs X ! R such that the
distribution over the possible function values on any rstéset oiX (such as
X) is multivariate Gaussian. For a functibfx), the prior distribution over its
valuesf onasubset X are completely speci ed by a covariance matix

: — - - — 1 1 1 .

4) p(f jK)=N(f;0,K) = BWGXD éf_lK f:
The covariance matrix is generated by a covariance functiok X 7! R;
thatis,K = (X;X ). Thecpmodel is expressed by the choice gfwe con-
sider theexponentiated quadratisquared exponential) amdtional quadratic
Note that we have chosen a zero mean function, encoding siuengsion that
Py =1)= % suf ciently far from training data.

Given training dat®, we use thesPto make predictions about the function
valuesf at inputx . With this information, we have the predictive equations

() p(f jx;D)=N f ;m(f jx;D);V(f jx;D) ;
where

6) m(f jx ;D)= K(x ; X)K(X;X) 'y
(7))  V( jx;D)= KX ;:;x) KX ;X)KXX) KXx):

Inferring the label posterigo(y j x ;D) is complicated by the non-Gaussian
form of the logistic (3). In order to effect inference, we uke approximate
Expectation Propagation algorithm (Minka, 2001).

We tested three Gaussian process classi ers using ke toolbox (Ras-
mussen and Nickisch, 2010) on our data, built around exgated quadratic,
rational quadratic and linear covariances. Note that ttierlés equivalent to
logistic regression with a Gaussian prior taken on the wsigh To validate
these classi ers, we randomly selected a reduced trairebhgfshalf the avail-
able dataD; the remaining data formed a test set. On this test set, weatea
how closely the algorithm's classi cations matched the dhdatbels according
to two metrics (see.g. Murphy (2012)): the area under the receiver operat-
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TABLE Il. Performance of various classi ers; best performancdsald.

classi er model AUC log-likelihood
exponentiated quadratic 0:894 163:3
rational quadratic 0:893 1637
linear (logit regression) 0:827 2050

ing characteristic curvea(c), which is equal to one for a perfect classi er,
and one half for a completely random classi er, and the likghhood, which
should ideally be high. This experiment was repeated forramalred random
selections of training set, and the average results tadallat Table 1l. The
exponentiated quadratic model returns (narrowly) the pegbrmance of the
three (clearly outperforming the linear model correspogdo logistic regres-
sion), and was hence selected for the remainder of our gestiote that its
AUC score of nearly 0.9 represents accurate classi cation:atgorithm suc-
cessfully managed to reproduce our hand-labels specifyiregher an occupa-
tion was computerisable. This means that our algorithmeaetthat our sub-
jective judgements were systematically and consisteetbted to thed NET
variables.

Having validated our approach, we proceed to use classbodb predict
the probability of computerisation for all 702 occupatiorf®r this purpose,
we introduce a new label variable, denoting whether an occupation is truly
computerisable or not: note that this can be judged only @mceccupation
is computerised, at some indeterminate point in the fut\ive.take, again, a
logistic likelihood,

1

(8) P(z=1jf)=m:

We implicitly assumed that our hand labgl,is a noise-corrupted version of
the unknown true label. Our motivation is that our hand-labels of comput-
erisability must necessarily be treated as such noisy messnts. We thus
acknowledge that it is by no means certain that a job is coenjzaible given
our labelling. We de neX 2 R7%? ° as the matrix ob NET variables for all
702 occupations; this matrix represents tast features

We perform a nal experiment in which, given training dda consisting
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of our 70 hand-labelled occupations, we aim to predicior our test features
X . This approach rstly allows us to use the features of the Zéupations

about which we are most certain to predict for the remaini8®. 6-urther, our
algorithm uses the trends and patterns it has learned frékndiatia to correct
for what are likely to be mistaken labels. More preciselg,dlgorithm provides
a smoothly varying probabilistic assessment of autombtiygbs a function of

the variables. For our Gaussian process classi er, thistfan is non-linear,

meaning that it exibly adapts to the patterns inherent ia tifaining data. Our
approach thus allows for more complex, non-linear, intéosas between vari-
ables: for example, perhaps one variable is not of impoetamtess the value
of another variable is suf ciently large. We repdi(z j X ;D) as the prob-

ability of computerisation henceforth (for a detailed pabhlity ranking, see

Appendix). Figure Il illustrates that this probability i®mlinearly related to
the nineo NET variables selected.

V. EMPLOYMENT IN THE TWENTY-FIRST CENTURY

In this section, we examine the possible future extent ois&tjob computerisa-
tion, and related labour market outcomes. The task modédigisethat recent
developments irML will reduce aggregate demand for labour input in tasks
that can be routinised by means of pattern recognition,enhdreasing the de-
mand for labour performing tasks that are not susceptibtoputerisation.
However, we make no attempt to forecast future changes io¢bepational
composition of the labour market. While the 2010-2@28 occupational em-
ployment projections predicts net employment growth across major occupa-
tions, based on historical staf ng patterns, we speculbtaiaitechnology that
is in only the early stages of development. This means tlsabtcal data on
the impact of the technological developments we observaasailable?! We
therefore focus on the impact of computerisation on the ripolos that ex-
isted in 2010. Our analysis is thus limited to the subsbiugffect of future
computerisation.

Turning rst to the expected employment impact, reporteéigure 111, we
distinguish between high, medium and low risk occupatidepending on their

211t shall be noted that thBLS projections are based on what can be referred to as changes
in normal technological progress, and not on any breaktitraechnologies that may be seen
as conjectural.

36



Management, Business, and Financial
I Computer, Engineering, and Science
Education, Legal, Community Service, Arts, and Media
I Healthcare Practitioners and Technical
Service
I Sales and Related
Of ce and Administrative Support
[ Farming, Fishing, and Forestry
Construction and Extraction
I Installation, Maintenance, and Repair
Production
I Transportation and Material Moving

400M

Low! Medium High! /,
33% Employment 19% Employment 47% Employment;

300M -

Employment
N
o
o
<

100M -

oM

Probability of Computerisation

FIGURE IIl. The distribution ofLs 2010 occupational employment over the probability of
computerisation, along with the share in low, medium andh pigpbability categories. Note
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probability of computerisation (thresholding at probdia@s of 0.7 and 0.3).
According to our estimate, 47 percent of tatalemployment is in the high risk
category, meaning that associated occupations are paltg@titomatable over
some unspeci ed number of years, perhaps a decade or twballtlse noted
that the probability axis can be seen as a rough timelinerevhigh probabil-
ity occupations are likely to be substituted by computeiteapelatively soon.
Over the next decades, the extent of computerisation wiliétermined by
the pace at which the above described engineering botkertecautomation
can be overcome. Seen from this perspective, our ndingsddoe interpreted
as two waves of computerisation, separated by a “techrzdbgiateau”. In
the rst wave, we nd that most workers in transportation dodistics occu-
pations, together with the bulk of of ce and administratsgpport workers,
and labour in production occupations, are likely to be stiistd by computer
capital. As computerised cars are already being developédhe declining
cost of sensors makes augmenting vehicles with advancediseincreasingly
cost-effective, the automation of transportation anddbgs occupations is in
line with the technological developments documented inliteeature. Fur-
thermore, algorithms for big data are already rapidly engedomains reliant
upon storing or accessing information, making it equallyiiive that of ce
and administrative support occupations will be subjecoimguterisation. The
computerisation of production occupations simply suggastontinuation of a
trend that has been observed over the past decades, wistniaditobots taking
on the routine tasks of most operatives in manufacturingindastrial robots
are becoming more advanced, with enhanced senses andtyettiey will be
able to perform a wider scope of non-routine manual taskeamfa technologi-
cal capabilities point of view, the vast remainder of emphept in production
occupations is thus likely to diminish over the next decades

More surprising, at rst sight, is that a substantial sharemployment in
services, sales and construction occupations exhibit frighabilities of com-
puterisation. Yet these ndings are largely in line witheat documented tech-
nological developments. First, the market for personal lamasehold service
robots is already growing by about 20 percent annually (MZBl.3). As the
comparative advantage of human labour in tasks involvingititlpand dexter-
ity will diminish over time, the pace of labour substitutionservice occupa-
tions is likely to increase even further. Second, while @me counterintuitive
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that sales occupations, which are likely to require a higireke of social intel-
ligence, will be subject to a wave of computerisation in tleamfuture, high
risk sales occupations include, for example, cashiersteoand rental clerks,
and telemarketers. Although these occupations involheractive tasks, they
do not necessarily require a high degree of social intelbige Our model thus
seems to do well in distinguishing between individual o@tigns within oc-
cupational categories. Third, prefabrication will allowg@wing share of con-
struction work to be performed under controlled conditionfactories, which
partly eliminates task variability. This trend is likely tliive the computerisa-
tion of construction work.

In short, our ndings suggest that recent developmenistirwill put a sub-
stantial share of employment, across a wide range of ocansatat risk in the
near future. According to our estimates, however, this vwd\aitomation will
be followed by a subsequent slowdown in computers for lalsoinstitution,
due to persisting inhibiting engineering bottlenecks tapaterisation. The
relatively slow pace of computerisation across the medisknaategory of em-
ployment can thus partly be interpreted as a technologietéau, with incre-
mental technological improvements successively enalflinger labour sub-
stitution. More speci cally, the computerisation of ocains in the medium
risk category will mainly depend on perception and manipoifachallenges.
This is evident from Table Ill, showing that the “manual deiy”, “ nger
dexterity” and “cramped work space” variables exhibit tigkly high values
in the medium risk category. Indeed, even with recent teldyical develop-
ments, allowing for more sophisticated pattern recognjttmiman labour will
still have a comparative advantage in tasks requiring moreptex percep-
tion and manipulation. Yet with incremental technologicaprovements, the
comparative advantage of human labour in perception andpmlation tasks
could eventually diminish. This will require innovativestarestructuring, im-
provements iML approaches to perception challenges, and progress incobot
dexterity to overcome manipulation problems related toat@mn between task
iterations and the handling of irregular objects. The gaghdomputerisation of
installation, maintenance, and repair occupations, warehargely con ned to
the medium risk category, and require a high degree of pgoregnd manipu-
lation capabilities, is a manifestation of this observatio

Our model predicts that the second wave of computerisatidimvainly
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TABLE IlI. Distribution (mean and standard deviation) of valuesdach variable.

Variable Probability of Computerisation

Low  Medium High
Assisting and caring for others 420 41 17 34 10

Persuasion 487.1 3598 32 7.8
Negotiation 4476 3393 3089
Social perceptiveness 579 4174 3755
Fine arts 1220 3512 1355
Originality 51 65 3512 3256
Manual dexterity 2218 34 15 36 14
Finger dexterity 3610 39 10 40 10
Cramped work space 195 37 26 31 20

depend on overcoming the engineering bottlenecks relatedettive and so-
cial intelligence. As reported in Table Ill, the “ ne arts"priginality”, “ne-
gotiation”, “persuasion”, “social perceptiveness”, ardsisting and caring for
others”, variables, all exhibit relatively high values Iretlow risk category. By
contrast, we note that the “manual dexterity”, “ nger dex¢’ and “cramped
work space” variables take relatively low values. Hencahart, generalist oc-
cupations requiring knowledge of human heuristics, andigpst occupations
involving the development of novel ideas and artifacts,theeleast suscepti-
ble to computerisation. As a prototypical example of gelisravork requir-
ing a high degree of social intelligence, considerthelET tasks reported for
chief executives, involving “conferring with board memserrganization of -
cials, or staff members to discuss issues, coordinateitaesivor resolve prob-
lems”, and “negotiating or approving contracts or agredsie@ur predictions
are thus intuitive in that most management, business, aadca occupations,
which are intensive in generalist tasks requiring socitdlilgence, are largely
con ned to the low risk category. The same is true of most petions in
education, healthcare, as well as arts and media jobsOTKET tasks of ac-
tors, for example, involve “performing humorous and sesioierpretations of
emotions, actions, and situations, using body movemeatglfexpressions,
and gestures”, and “learning about characters in scriptstaeir relationships
to each other in order to develop role interpretations.” M/kiese tasks are
very different from those of a chief executive, they equadiguire profound
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knowledge of human heuristics, implying that a wide rangeasks, involv-
ing social intelligence, are unlikely to become subjectdmputerisation in the
near future.

The low susceptibility of engineering and science occupatio computer-
isation, on the other hand, is largely due to the high degfeeeative intelli-
gence they require. The NET tasks of mathematicians, for example, involve
“developing new principles and new relationships betweestiag mathemat-
ical principles to advance mathematical science” and “oetidg research to
extend mathematical knowledge in traditional areas, sa@igebra, geometry,
probability, and logic.” Hence, while it is evident that cputers are enter-
ing the domains of science and engineering, our predictiapficitly suggest
strong complementarities between computers and laboueatize science and
engineering occupations; although it is possible that agers will fully sub-
stitute for workers in these occupations over the long-rWe note that the
predictions of our model are strikingly in line with the texiogical trends we
observe in the automation of knowledge work, even withinupational cate-
gories. For example, we nd that paralegals and legal aasist— for which
computers already substitute — in the high risk category.th&tsame time,
lawyers, which rely on labour input from legal assistants, ia the low risk
category. Thus, for the work of lawyers to be fully automatatgyineering bot-
tlenecks to creative and social intelligence will need tatbercome, implying
that the computerisation of legal research will complentieatvork of lawyers
in the medium term.

To complete the picture of what recent technological prsgiie likely to
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mean for the future of employment, we plot the average med&ge of oc-
cupations by their probability of computerisation. We de same for skill
level, measured by the fraction of workers having obtainbdahelor's degree,
or higher educational attainment, within each occupatibigure IV reveals
that both wages and educational attainment exhibit a stnegative relation-
ship with the probability of computerisation. We note thastprediction im-
plies a truncation in the current trend towards labour nigokéarization, with
growing employment in high and low-wage occupations, aquamed by a
hollowing-out of middle-income jobs. Rather than reducthg demand for
middle-income occupations, which has been the patterntbegpast decades,
our model predicts that computerisation will mainly sutegé for low-skill and
low-wage jobs in the near future. By contrast, high-skillldangh-wage occu-
pations are the least susceptible to computer capital.

Our ndings were robust to the choice of the 70 occupatiora fbrmed
our training data. This was con rmed by the experimentauhsstabulated in
Table II: aGP classi er trained on half of the training data was demoridira
able to accurately predict the labels of the other half, omerhundred different
partitions. That these predictions are accurate for masgipte partitions of
the training set suggests that slight modi cations to tleésage unlikely to lead
to substantially different results on the entire dataset.

V.A. Limitations

It shall be noted that our predictions are based on expantii@gremises
about the tasks that computer-controlled equipment carjtecéed to perform.
Hence, we focus on estimating the share of employment timgbatentially be
substituted by computer capital, from a technological bdpis point of view,
over some unspeci ed number of years. We make no attemptimae how
many jobs will actually be automated. The actual extent a f comput-
erisation will depend on several additional factors whi@reveft unaccounted
for.

First, labour saving inventions may only be adopted if theeas to cheap
labour is scarce or prices of capital are relatively highl{adékuk, 196272 We

22For example, case study evidence suggests that mechanisagighteenth century cotton
production initially only occurred in Britain because wdgeels were much higher relative to
prices of capital than in other countries (Allen, 2009b) atidition, recent empirical research
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do not account for future wage levels, capital prices orlalstortages. While
these factors will impact on the timeline of our predictipiadour is the scarce
factor, implying that in the long-run wage levels will inaise relative to cap-
ital prices, making computerisation increasingly pro lalfsee, for example,
Acemoglu, 2003).

Second, regulatory concerns and political activism may slown the pro-
cess of computerisation. The states of California and Neaae, for example,
currently in the process of making legislatory changes lmaafor driverless
cars. Similar steps will be needed in other states, and atioal to various
technologies. The extent and pace of legislatory impleatent can further-
more be related to the public acceptance of technologicairpss Although
resistance to technological progress has become seent@sglgommon since
the Industrial Revolution, there are recent examples a$tasce to technolog-
ical change&? We avoid making predictions about the legislatory process a
the public acceptance of technological progress, and tleipace of comput-
erisation.

Third, making predictions about technological progressatriously dif-
cult (Armstrong and Sotala, 2012f. For this reason, we focus on near-term
technological breakthroughs ML andMR, and avoid making any predictions
about the number of years it may take to overcome varioushergng bot-
tlenecks to computerisation. Finally, we emphasise thetesour probability
estimates describe the likelihood of an occupation beitly &utomated, we
do not capture any within-occupation variation resultirani the computerisa-
tion of tasks that simply free-up time for human labour tofgen other tasks.

reveals a causal relationship between the access to cHeap l@nd mechanisation in agricul-
tural production, in terms of sustained economic transit@vards increased mechanisation in
areas characterised by low-wage worker out-migration flHdeck and Naidu, 2013).

2For instance, William Huskisson, former cabinet ministed ember of Parliament for
Liverpool, was killed by a steam locomotive during the openef the Liverpool and Manch-
ester Railway. Nonetheless, this well-publicised inctd#id anything but dissuade the public
from railway transportation technology. By contrast, iipgechnology is widely recognised as
having been popularly abandoned as a consequence of théimgud the Hindenburg disaster.

24Uber, a start-up company connecting passengers with drafeluxury vehicles, has re-
cently faced pressure from from local regulators, arisiognf tensions with taxicab services.
Furthermore, in 2011 thek Government scrapped a 12.7 billi@Bp project to introduce
electronic patient records after resistance from doctors.

25Marvin Minsky famously claimed in 1970 that “in from threeedght years we will have
a machine with the general intelligence of an average hureargh This prediction is yet to
materialise.
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Although it is clear that the impact of productivity gains employment will
vary across occupations and industries, we make no attengxamine such
effects.

VI. CONCLUSIONS

While computerisation has been historically con ned totnoe tasks involving
explicit rule-based activities (Autoet al, 2003; Gooset al, 2009; Autor and
Dorn, 2013), algorithms for big data are now rapidly entgrilomains reliant
upon pattern recognition and can readily substitute faplalin a wide range of
non-routine cognitive tasks (Brynjolfsson and McAfee, 20MGl, 2013). In
addition, advanced robots are gaining enhanced sensesatatity, allowing
them to perform a broader scope of manual tasks (IFR, 201@bofRs-VO,
2013; MGI, 2013). This is likely to change the nature of wockass industries
and occupations.

In this paper, we ask the question: how susceptible aremjoies to these
technological developments? To assess this, we implemeovel methodol-
ogy to estimate the probability of computerisation for 7@2ailed occupations.
Based on these estimates, we examine expected impactsuoé framputeri-
sation on labour market outcomes, with the primary objectivanalysing the
number of jobs at risk and the relationship between an o¢mrpgaprobability
of computerisation, wages and educational attainment.

We distinguish between high, medium and low risk occupatialepend-
ing on their probability of computerisation. We make no @ipe to estimate
the number of jobs that will actually be automated, and famupotential job
automatability over some unspeci ed number of years. Adowy to our esti-
mates around 47 percent of toted employment s in the high risk category. We
refer to these as jobs at riskie. jobs we expect could be automated relatively
soon, perhaps over the next decade or two.

Our model predicts that most workers in transportation agistics occu-
pations, together with the bulk of of ce and administratsteoport workers, and
labour in production occupations, are at risk. These ndiage consistent with
recent technological developments documented in thatitez. More surpris-
ingly, we nd that a substantial share of employment in segvoccupations,
where mosus job growth has occurred over the past decades (Autor and,Dorn
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2013), are highly susceptible to computerisation. Addiiosupport for this
nding is provided by the recent growth in the market for seevrobots (MGI,
2013) and the gradually diminishment of the comparativeaathge of human
labour in tasks involving mobility and dexterity (Robotie®, 2013).

Finally, we provide evidence that wages and educationailnaittent exhibit
a strong negative relationship with the probability of catgpisation. We note
that this nding implies a discontinuity between the niretéh, twentieth and
the twenty- rst century, in the impact of capital deepenmygthe relative de-
mand for skilled labour. While nineteenth century manufaog technologies
largely substituted for skilled labour through the simphtion of tasks (Braver-
man, 1974; Hounshell, 1985; James and Skinner, 1985; GaidirKatz, 1998),
the Computer Revolution of the twentieth century causedlmwmg-out of
middle-income jobs (Goost al, 2009; Autor and Dorn, 2013). Our model
predicts a truncation in the current trend towards labourketgpolarisation,
with computerisation being principally con ned to low-flkand low-wage oc-
cupations. Our ndings thus imply that as technology radesaal, low-skill
workers will reallocate to tasks that are non-susceptibleamputerisation —
i.e., tasks requiring creative and social intelligence. Forkeos to win the
race, however, they will have to acquire creative and sckidh.
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APPENDIX

The table below ranks occupations according to their pritibabf computeri-
sation (from least- to most-computerisable). Those odmoipsused as training
data are labelled as either "0' (not computerisable) orcahfputerisable), re-
spectively. There are 70 such occupations, 10 percent abtaenumber of

occupations.

Computerisable

Rank  Probability Label soccode Occupation

1. 0.0028 29-1125 Recreational Therapists

2. 0.003 49-1011 First-Line Supervisors of Mechanics dlfests, and Repairers
3. 0.003 11-9161 Emergency Management Directors

4. 0.0031 21-1023 Mental Health and Substance Abuse Societans

5. 0.0033 29-1181 Audiologists

6. 0.0035 29-1122 Occupational Therapists

7. 0.0035 29-2091 Orthotists and Prosthetists

8. 0.0035 21-1022 Healthcare Social Workers

9. 0.0036 29-1022 Oral and Maxillofacial Surgeons

10. 0.0036 33-1021 First-Line Supervisors of Fire Fightmgl Prevention Workers
11. 0.0039 29-1031 Dietitians and Nutritionists

12. 0.0039 11-9081 Lodging Managers

13. 0.004 27-2032 Choreographers

14. 0.0041 41-9031 Sales Engineers

15. 0.0042 0 29-1060 Physicians and Surgeons

16. 0.0042 25-9031 Instructional Coordinators

17. 0.0043 19-3039 Psychologists, All Other

18. 0.0044 33-1012 First-Line Supervisors of Police anceEtetes

19. 0.0044 0 29-1021 Dentists, General

20. 0.0044 25-2021 Elementary School Teachers, Excepidiication
21. 0.0045 19-1042 Medical Scientists, Except Epidemisteg

22. 0.0046 11-9032 Education Administrators, Elementary $econdary School
23. 0.0046 29-1081 Podiatrists

24. 0.0047 19-3031 Clinical, Counseling, and School Pdgciists

25. 0.0048 21-1014 Mental Health Counselors

26. 0.0049 51-6092 Fabric and Apparel Patternmakers

27. 0.0055 27-1027 Set and Exhibit Designers

28. 0.0055 11-3121 Human Resources Managers

29. 0.0061 39-9032 Recreation Workers

30. 0.0063 11-3131 Training and Development Managers

31. 0.0064 29-1127 Speech-Language Pathologists

32. 0.0065 15-1121 Computer Systems Analysts

33. 0.0067 0 11-9151 Social and Community Service Managers

34. 0.0068 25-4012 Curators

35. 0.0071 29-9091 Athletic Trainers

36. 0.0073 11-9111 Medical and Health Services Managers

37. 0.0074 0 25-2011 Preschool Teachers, Except Speciabidn

38. 0.0075 25-9021 Farm and Home Management Advisors

39. 0.0077 19-3091 Anthropologists and Archeologists
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Computerisable

Rank  Probability Label soccode

Occupation

40. 0.0077 25-2054
41. 0.0078 25-2031
42. 0.0081 0 21-2011
43. 0.0081 19-1032
44. 0.0085 21-1012
45. 0.0088 25-2032
46. 0.009 0 20-1111
47. 0.0094 21-1015
48. 0.0095 25-3999
49. 0.0095 19-4092
50. 0.01 39-5091
51. 0.01 17-2121
52. 0.01 11-9033
53. 0.011 17-2141
54. 0.012 29-1051
55. 0.012 13-1081
56. 0.012 19-1022
57. 0.012 19-3032
58. 0.013 27-2022
59. 0.013 11-2022
60. 0.014 19-2043
61. 0.014 11-2021
62. 0.014 0 21-1013
63. 0.014 17-2199
64. 0.014 13-1151
65. 0.014 43-1011
66. 0.015 19-1029
67. 0.015 11-2031
68. 0.015 27-1014
69. 0.015 15-1111
70. 0.015 0 11-1011
71. 0.015 0 11-9031
72. 0.015 27-2041
73. 0.016 51-1011
74. 0.016 41-3031
75. 0.016 19-1031
76. 0.016 25-2053
77. 0.017 17-2041
78. 0.017 11-9041
79. 0.017 17-2011
80. 0.018 11-9121
81. 0.018 17-2081
82. 0.018 17-1011
83. 0.018 31-2021
84. 0.019 0 17-2051
85. 0.02 29-1199
86. 0.021 19-1013
87. 0.021 19-2032

Special Education Teachers, Secondanos
Secondary School Teachers, Exceptebped Career/Technical Edu-

cation

Clergy

Foresters

Educational, Guidance, School, andtdmzd Counselors
Career/Technical Education Teachermrislary School
Registered Nurses

Rehabilitation Counselors

Teachers and Instructors, All Other

Forensic Science Technicians

Makeup Atrtists, Theatrical and Perforraanc

Marine Engineers and Naval Architects

Education Administrators, Postsecondary

Mechanical Engineers

Pharmacists

Logisticians

Microbiologists

Industrial-Organizational Psycholsgis

Coaches and Scouts

Sales Managers

Hydrologists

Marketing Managers

Marriage and Family Therapists

Engineers, All Other

Training and Development Specialists

First-Line Supervisors of Of ce and Adisirative Support Workers
Biological Scientists, All Other

Public Relations and Fundraising Marsager
Multimedia Artists and Animators

Computer and Information Research Sstient

Chief Executives

Education Administrators, PreschoolGmldcare Center/Program
Music Directors and Composers

First-Line Supervisors of Production @pérating Workers
Securities, Commodities, and Finan@&ali€es Sales Agents
Conservation Scientists

Special Education Teachers, Middle Schoo

Chemical Engineers

Architectural and Engineering Managers

Aerospace Engineers

Natural Sciences Managers

Environmental Engineers

Architects, Except Landscape and Naval

Physical Therapist Assistants

Civil Engineers

Health Diagnosing and Treating PracetignAll Other
Soil and Plant Scientists

Materials Scientists
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Computerisable

Rank  Probability Label soccode

Occupation

88. 0.021 17-2131
89. 0.021 0 27-1022
90. 0.021 29-1123
91. 0.021 27-4021
92. 0.022 27-2012
93. 0.022 27-1025
94. 0.023 29-1023
95. 0.023 27-1011
96. 0.025 33-1011
97. 0.025 21-2021
98. 0.025 17-2072
99. 0.027 19-1021
100. 0.027 29-1011
101. 0.028 31-2011
102. 0.028 21-1021
103. 0.028 17-2111
104. 0.029 17-2112
105. 0.029 53-1031
106. 0.029 29-2056
107. 0.03 11-3051
108. 0.03 17-3026
109. 0.03 15-1142
110. 0.03 15-1141
111. 0.03 11-3061
112. 0.032 25-1000
113. 0.033 19-2041
114. 0.033 0 21-1011
115. 0.035 0 23-1011
116. 0.035 27-1012
117. 0.035 15-2031
118. 0.035 11-3021
119. 0.037 27-1021
120. 0.037 17-2031
121. 0.037 0 13-1121
122. 0.038 29-1131
123. 0.038 27-3043
124. 0.039 11-2011
125. 0.039 19-3094
126. 0.04 13-2071
127. 0.04 19-3099
128. 0.041 19-2011
129. 0.041 53-5031
130. 0.042 15-1132
131. 0.042 27-1013
132. 0.043 29-2053
133. 0.045 0 17-1012
134. 0.045 21-1091

Materials Engineers

Fashion Designers

Physical Therapists

Photographers

Producers and Directors

Interior Designers

Orthodontists

Art Directors

First-Line Supervisors of Correctionbt€s

Directors, Religious Activities and Eatign

Electronics Engineers, Except Computer

Biochemists and Biophysicists

Chiropractors

Occupational Therapy Assistants

Child, Family, and School Social Workers

Health and Safety Engineers, ExceptrigiBiafety Engineers and In-
spectors

Industrial Engineers

First-Line Supervisors of Transpanesind Material-Moving Machine
and Vehicle Operators

Veterinary Technologists and Techmicia

Industrial Production Managers

Industrial Engineering Technicians

Network and Computer Systems Admingssat

Database Administrators

Purchasing Managers

Postsecondary Teachers

Environmental Scientists and Spetsaliscluding Health

Substance Abuse and Behavioral DisGalenselors

Lawyers

Craft Artists

Operations Research Analysts

Computer and Information Systems Masage

Commercial and Industrial Designers

Biomedical Engineers

Meeting, Convention, and Event Planner

Veterinarians

Writers and Authors

Advertising and Promotions Managers

Political Scientists

Credit Counselors

Social Scientists and Related Worketwler

Astronomers

Ship Engineers

Software Developers, Applications

Fine Artists, Including Painters, Stufp and lllustrators

Psychiatric Technicians

Landscape Architects

Health Educators
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Computerisable

Rank  Probability Label soccode Occupation

135. 0.047 15-2021 Mathematicians

136. 0.047 27-1023 Floral Designers

137. 0.047 11-9013 Farmers, Ranchers, and Other Agrielifidanagers
138. 0.048 33-2022 Forest Fire Inspectors and Preventieni&sts
139. 0.049 29-2041 Emergency Medical Technicians and Ratias
140. 0.055 27-3041 Editors

141. 0.055 29-1024 Prosthodontists

142. 0.055 0 29-9799 Healthcare Practitioners and Techwiogkers, All Other
143. 0.057 39-7012 Travel Guides

144. 0.058 29-2061 Licensed Practical and Licensed VatatiNurses
145. 0.059 19-3041 Sociologists

146. 0.06 23-1022 Arbitrators, Mediators, and Conciligtor

147. 0.061 19-1011 Animal Scientists

148. 0.064 39-9041 Residential Advisors

149. 0.066 53-1011 Aircraft Cargo Handling Supervisors

150. 0.066 29-1126 Respiratory Therapists

151. 0.067 27-3021 Broadcast News Analysts

152. 0.069 11-3031 Financial Managers

153. 0.07 17-2161 Nuclear Engineers

154. 0.071 11-9021 Construction Managers

155. 0.074 27-2042 Musicians and Singers

156. 0.075 41-1012 First-Line Supervisors of Non-RetaleS&Vorkers
157. 0.076 39-1021 First-Line Supervisors of Personali€eM/orkers
158. 0.077 19-1012 Food Scientists and Technologists

159. 0.08 0 13-1041 Compliance Of cers

160. 0.08 33-3031 Fish and Game Wardens

161. 0.082 27-1024 Graphic Designers

162. 0.083 11-9051 Food Service Managers

163. 0.084 0 39-9011 Childcare Workers

164. 0.085 39-9031 Fitness Trainers and Aerobics Instrsicto

165. 0.091 11-9071 Gaming Managers

166. 0.097 49-9051 Electrical Power-Line Installers angd®ers
167. 0.098 33-3051 Police and Sheriff's Patrol Of cers

168. 0.099 41-3041 Travel Agents

169. 0.1 0 35-1011 Chefs and Head Cooks

170. 0.1 39-2011 Animal Trainers

171. 0.1 27-3011 Radio and Television Announcers

172. 0.1 0 17-2071 Electrical Engineers

173. 0.1 19-2031 Chemists

174. 0.1 29-2054 Respiratory Therapy Technicians

175. 0.1 0 19-2012 Physicists

176. 0.11 0 39-5012 Hairdressers, Hairstylists, and Casloggsts

177. 0.11 27-3022 Reporters and Correspondents

178. 0.11 53-2021 Air Traf ¢ Controllers

179. 0.13 27-2031 Dancers

180. 0.13 29-2033 Nuclear Medicine Technologists

181. 0.13 15-1133 Software Developers, Systems Software

182. 0.13 13-1111 Management Analysts

183. 0.13 29-2051 Dietetic Technicians
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Computerisable

Rank  Probability Label soccode

Occupation

184. 0.13 19-3051
185. 0.13 21-1093
186. 0.13 25-3021
187. 0.13 27-4014
188. 0.14 29-1041
189. 0.14 17-2151
190. 0.14 29-1071
191. 0.15 25-2012
192. 0.15 47-2111
193. 0.16 17-2171
194. 0.16 43-9031
195. 0.16 11-1021
196. 0.17 29-9011
197. 0.17 33-2011
198. 0.17 13-2061
199. 0.17 47-1011
200. 0.17 25-2022
201. 0.18 27-3031
202. 0.18 49-9092
203. 0.18 49-9095
204. 0.18 53-2011
205. 0.19 25-3011
206. 0.2 19-1041
207. 0.2 39-4831
208. 0.21 15-1179
209. 0.21 15-2011
210. 0.21 33-9011
211. 0.21 0 39-6012
212. 0.22 15-1799
213. 0.22 15-2041
214. 0.22 17-2061
215. 0.23 19-3022
216. 0.23 13-1199
217. 0.23 13-2051
218. 0.23 29-2037
219. 0.23 29-2031
220. 0.24 13-1011
221. 0.24 17-3029
222. 0.25 19-3092
223. 0.25 29-9012
224. 0.25 21-1092
225. 0.25 17-3025
226. 0.25 11-9199
227. 0.25 53-3011
228. 0.25 41-4011

Urban and Regional Planners

Social and Human Service Assistants

Self-Enrichment Education Teachers

Sound Engineering Technicians

Optometrists

Mining and Geological Engineers, Inclgdvlining Safety Engineers

Physician Assistants

Kindergarten Teachers, Except SpeciatdEidn

Electricians

Petroleum Engineers

Desktop Publishers

General and Operations Managers

Occupational Health and Safety Spetsialis

Fire ghters

Financial Examiners

First-Line Supervisors of Constructioad€s and Extraction Workers

Middle School Teachers, Except SpecilCareer/Technical Educa-
tion

Public Relations Specialists

Commercial Divers

Manufactured Building and Mobile Homedltesrs

Airline Pilots, Copilots, and Flight Emegrs

Adult Basic and Secondary Education atetddy Teachers and In-
structors

Epidemiologists

Funeral Service Managers, Directors, iblants, and Undertakers

Information Security Analysts, Web Depels, and Computer Net-
work Architects

Actuaries

Animal Control Workers

Concierges

Computer Occupations, All Other

Statisticians

Computer Hardware Engineers

Survey Researchers

Business Operations Specialists, AkOth

Financial Analysts

Radiologic Technologists and Techrscian

Cardiovascular Technologists and Teins

Agents and Business Managers of Artistfoiners, and Athletes

Engineering Technicians, Except Disftelt Other

Geographers

Occupational Health and Safety Techrgcia

Probation Of cers and Correctional Trestt Specialists

Environmental Engineering Technicians

Managers, All Other

Ambulance Drivers and Attendants, ExEepergency Medical Tech-
nicians

Sales Representatives, Wholesale andfétamring, Technical and
Scienti ¢ Products
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Computerisable

Rank  Probability Label soccode

Occupation

229. 0.26 25-2023
230. 0.27 53-5021
231. 0.27 31-2012
232. 0.27 49-9062
233. 0.28 41-1011
234. 0.28 0 27-2021
235. 0.28 39-1011
236. 0.29 39-5094
237. 0.29 13-1022
238. 0.3 19-4021
239. 0.3 31-9092
240. 0.3 0 19-1023
241. 0.3 35-2013
242. 0.31 13-1078
243. 0.31 33-9021
244, 0.31 27-4032
245, 0.33 13-2099
246. 0.34 33-3021
247. 0.34 29-2055
248. 0.34 29-1124
249. 0.35 0 47-2152
250. 0.35 0 53-2031
251. 0.35 29-2032
252. 0.36 33-3011
253. 0.36 51-4012
254, 0.36 49-2022
255. 0.37 51-9051
256. 0.37 53-7061
257. 0.37 39-4021
258. 0.37 47-5081
259. 0.37 27-2011
260. 0.37 53-7111
261. 0.38 49-2095
262. 0.38 1 17-1022
263. 0.38 17-3027
264. 0.38 53-7064
265. 0.38 27-3091
266. 0.39 31-1011
267. 0.39 51-6093
268. 0.39 47-4021
269. 0.39 43-3041
270. 0.39 25-9011
271. 0.4 0 23-1023
272. 0.4 49-3042
273. 0.4 29-2799
274. 0.41 45-2041

Career/Technical Education TeachewlIliSchool

Captains, Mates, and Pilots of Water \&sse

Occupational Therapy Aides

Medical Equipment Repairers

First-Line Supervisors of Retail Saleskéis

Athletes and Sports Competitors

Gaming Supervisors

Skincare Specialists

Wholesale and Retail Buyers, Except Faouuets

Biological Technicians

Medical Assistants

Zoologists and Wildlife Biologists

Cooks, Private Household

Human Resources, Training, and LabotiRe$aSpecialists, All Other

Private Detectives and Investigators

Film and Video Editors

Financial Specialists, All Other

Detectives and Criminal Investigators

Surgical Technologists

Radiation Therapists

Plumbers, Pipe tters, and Steam tters

Flight Attendants

Diagnostic Medical Sonographers

Bailiffs

Computer Numerically Controlled Machloel Programmers, Metal
and Plastic

Telecommunications Equipment Instaberd Repairers, Except Line
Installers

Furnace, Kiln, Oven, Drier, and Kettle @pmes and Tenders

Cleaners of Vehicles and Equipment

Funeral Attendants

Helpers—Extraction Workers

Actors

Mine Shuttle Car Operators

Electrical and Electronics Repairersyeloouse, Substation, and Re-
lay

Surveyors

Mechanical Engineering Technicians

Packers and Packagers, Hand

Interpreters and Translators

Home Health Aides

Upholsterers

Elevator Installers and Repairers

Gaming Cage Workers

Audio-Visual and Multimedia Collectid®gecialists

Judges, Magistrate Judges, and Magistrat

Mobile Heavy Equipment Mechanics, Exceypfiltes

Health Technologists and TechniciansQgier

Graders and Sorters, Agricultural Prisduc
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Computerisable

Rank  Probability Label soccode Occupation

275. 0.41 51-2041 Structural Metal Fabricators and Fitters

276. 0.41 1 23-1012 Judicial Law Clerks

277. 0.41 49-2094 Electrical and Electronics Repairersni@ercial and Industrial Equip-
ment

278. 0.42 19-4093 Forest and Conservation Technicians

279. 0.42 53-1021 First-Line Supervisors of Helpers, Latgmrand Material Movers,
Hand

280. 0.43 39-3093 Locker Room, Coatroom, and Dressing Rottemdants

281. 0.43 19-2099 Physical Scientists, All Other

282. 0.43 0 19-3011 Economists

283. 0.44 19-3093 Historians

284. 0.45 51-9082 Medical Appliance Technicians

285. 0.46 43-4031 Court, Municipal, and License Clerks

286. 0.47 13-1141 Compensation, Bene ts, and Job Analyseci@lists

287. 0.47 31-1013 Psychiatric Aides

288. 0.47 29-2012 Medical and Clinical Laboratory Tectamsi

289. 0.48 33-2021 Fire Inspectors and Investigators

290. 0.48 17-3021 Aerospace Engineering and Operatiorfmikgans

291. 0.48 27-1026 Merchandise Displayers and Window Trirsme

292. 0.48 47-5031 Explosives Workers, Ordnance HandlingeEsg, and Blasters

293. 0.48 15-1131 Computer Programmers

294. 0.49 33-9091 Crossing Guards

295. 0.49 17-2021 Agricultural Engineers

296. 0.49 47-5061 Roof Bolters, Mining

297. 0.49 49-9052 Telecommunications Line Installers agpaRers

298. 0.49 43-5031 Police, Fire, and Ambulance Dispatchers

299. 0.5 53-7033 Loading Machine Operators, Undergroundridi

300. 0.5 49-9799 Installation, Maintenance, and Repairkéfsr All Other

301. 0.5 23-2091 Court Reporters

302. 0.51 41-9011 Demonstrators and Product Promoters

303. 0.51 31-9091 Dental Assistants

304. 0.52 51-6041 Shoe and Leather Workers and Repairers

305. 0.52 17-3011 Architectural and Civil Drafters

306. 0.53 47-5012 Rotary Drill Operators, Oil and Gas

307. 0.53 47-4041 Hazardous Materials Removal Workers

308. 0.54 39-4011 Embalmers

309. 0.54 47-5041 Continuous Mining Machine Operators

310. 0.54 39-1012 Slot Supervisors

311. 0.54 31-9011 Massage Therapists

312. 0.54 41-3011 Advertising Sales Agents

313. 0.55 49-3022 Automotive Glass Installers and Repsairer

314. 0.55 53-2012 Commercial Pilots

315. 0.55 43-4051 Customer Service Representatives

316. 0.55 27-4011 Audio and Video Equipment Technicians

317. 0.56 25-9041 Teacher Assistants

318. 0.57 45-1011 First-Line Supervisors of Farming, Fighand Forestry Workers

319. 0.57 19-4031 Chemical Technicians

320. 0.57 47-3015 Helpers—Pipelayers, Plumbers, Pips,tend Steam tters

321. 0.57 1 13-1051 Cost Estimators
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Computerisable

Rank  Probability Label soccode

Occupation

322. 0.57 33-3052
323. 0.57 37-1012
324. 0.58 13-2052
325. 0.59 49-9044
326. 0.59 25-4013
327. 0.59 47-5042
328. 0.59 0 11-3071
329. 0.59 49-3092
330. 0.59 49-3023
331. 0.6 33-3012
332. 0.6 27-4031
333. 0.6 51-3023
334. 0.61 49-2096
335. 0.61 31-2022
336. 0.61 39-3092
337. 0.61 1 13-1161
338. 0.61 43-4181
339. 0.61 51-8031
340. 0.61 19-4099
341. 0.61 51-3093
342. 0.61 51-4122
343. 0.62 1 53-5022
344. 0.62 47-2082
345. 0.62 47-2151
346. 0.63 19-2042
347. 0.63 49-9012
348. 0.63 31-9799
349. 0.63 35-1012
350. 0.63 47-4011
351. 0.64 51-9031
352. 0.64 49-9071
353. 0.64 23-1021
354. 0.64 43-5081
355. 0.64 51-8012
356. 0.64 47-2132
357. 0.65 19-4061
358. 0.65 51-4041
359. 0.65 15-1150
360. 0.65 25-4021
361. 0.65 49-2097
362. 0.65 49-9021
363. 0.65 53-7041
364. 0.66 37-2021
365. 0.66 51-9198
366. 0.66 43-9111
367. 0.66 37-2011
368. 0.66 49-3051

Transit and Railroad Police

First-Line Supervisors of Landscapingawh. Service, and
Groundskeeping Workers

Personal Financial Advisors

Millwrights

Museum Technicians and Conservators

Mine Cutting and Channeling Machine Gpesa

Transportation, Storage, and DistabWlanagers

Recreational Vehicle Service Techrician

Automotive Service Technicians and Meicka

Correctional Of cers and Jailers

Camera Operators, Television, Video, aatiod Picture

Slaughterers and Meat Packers

Electronic Equipment Installers and Reysa Motor Vehicles

Physical Therapist Aides

Costume Attendants

Market Research Analysts and Marketiegiglists

Reservation and Transportation Tickeinégyand Travel Clerks

Water and Wastewater Treatment Plant gstdrS Operators

Life, Physical, and Social Science Tedums, All Other

Food Cooking Machine Operators and Tender

Welding, Soldering, and Brazing Machiete®s, Operators, and Ten-
ders

Motorboat Operators

Tapers

Pipelayers

Geoscientists, Except Hydrologists aeng@&phers

Control and Valve Installers and Repmitexcept Mechanical Door

Healthcare Support Workers, All Other

First-Line Supervisors of Food Prepamaind Serving Workers

Construction and Building Inspectors

Cutters and Trimmers, Hand

Maintenance and Repair Workers, General

Administrative Law Judges, Adjudicatarsl Hearing Of cers

Stock Clerks and Order Fillers

Power Distributors and Dispatchers

Insulation Workers, Mechanical

Social Science Research Assistants

Machinists

Computer Support Specialists

Librarians

Electronic Home Entertainment Equiprirestallers and Repairers

Heating, Air Conditioning, and Refrigiera Mechanics and Installers

Hoist and Winch Operators

Pest Control Workers

Helpers—Production Workers

Statistical Assistants

Janitors and Cleaners, Except Maids andeheeping Cleaners

Motorboat Mechanics and Service Techmsci
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Computerisable

Rank  Probability Label soccode Occupation

369. 0.67 51-9196 Paper Goods Machine Setters, OperatatSenders

370. 0.67 51-4071 Foundry Mold and Coremakers

371. 0.67 19-2021 Atmospheric and Space Scientists

372. 0.67 1 53-3021 Bus Drivers, Transit and Intercity

373. 0.67 33-9092 Lifeguards, Ski Patrol, and Other Reioreat Protective Service Work-
ers

374. 0.67 49-9041 Industrial Machinery Mechanics

375. 0.68 43-5052 Postal Service Mail Carriers

376. 0.68 47-5071 Roustabouts, Oil and Gas

377. 0.68 47-2011 Boilermakers

378. 0.68 17-3013 Mechanical Drafters

379. 0.68 29-2021 Dental Hygienists

380. 0.69 1 53-3033 Light Truck or Delivery Services Drivers

381. 0.69 0 37-2012 Maids and Housekeeping Cleaners

382. 0.69 51-9122 Painters, Transportation Equipment

383. 0.7 43-4061 Eligibility Interviewers, Government grams

384. 0.7 49-3093 Tire Repairers and Changers

385. 0.7 51-3092 Food Batchmakers

386. 0.7 49-2091 Avionics Technicians

387. 0.71 49-3011 Aircraft Mechanics and Service Techngia

388. 0.71 53-2022 Air eld Operations Specialists

389. 0.71 51-8093 Petroleum Pump System Operators, Re@psrators, and Gaugers

390. 0.71 47-4799 Construction and Related Workers, Ale©th

391. 0.71 29-2081 Opticians, Dispensing

392. 0.71 51-6011 Laundry and Dry-Cleaning Workers

393. 0.72 39-3091 Amusement and Recreation Attendants

394. 0.72 31-9095 Pharmacy Aides

395. 0.72 47-3016 Helpers—Roofers

396. 0.72 53-7121 Tank Car, Truck, and Ship Loaders

397. 0.72 49-9031 Home Appliance Repairers

398. 0.72 47-2031 Carpenters

399. 0.72 27-3012 Public Address System and Other Annosincer

400. 0.73 51-6063 Textile Knitting and Weaving Machine &sitOperators, and Tenders

401. 0.73 11-3011 Administrative Services Managers

402. 0.73 47-2121 Glaziers

403. 0.73 51-2021 Coil Winders, Tapers, and Finishers

404. 0.73 49-3031 Bus and Truck Mechanics and Diesel Engieeidlists

405. 0.74 49-2011 Computer, Automated Teller, and Of ce Mae Repairers

406. 0.74 39-9021 Personal Care Aides

407. 0.74 27-4012 Broadcast Technicians

408. 0.74 47-3013 Helpers—Electricians

409. 0.75 11-9131 Postmasters and Mail Superintendents

410. 0.75 47-2044 Tile and Marble Setters

411. 0.75 47-2141 Painters, Construction and Maintenance

412. 0.75 53-6061 Transportation Attendants, Except Eigtendants

413. 0.75 1 17-3022 Civil Engineering Technicians

414. 0.75 49-3041 Farm Equipment Mechanics and Serviceni@ahs

415. 0.76 25-4011 Archivists

416. 0.76 51-9011 Chemical Equipment Operators and Tenders
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Computerisable

Rank  Probability Label soccode

Occupation

417. 0.76 49-2092
418. 0.76 45-4021
419. 0.77 19-4091
420. 0.77 49-9094
421. 0.77 37-3013
422. 0.77 35-3011
423. 0.77 13-1023
424. 0.77 1 35-9021
425. 0.77 0 45-3021
426. 0.78 31-9093
427. 0.78 51-4031
428. 0.78 43-9011
429. 0.78 51-8092
430. 0.79 43-5053
431. 0.79 53-3032
432. 0.79 39-5093
433. 0.79 47-2081
434. 0.79 49-9098
435. 0.79 49-3052
436. 0.79 51-2011
437. 0.79 45-4022
438. 0.79 47-2042
439. 0.8 39-5011
440. 0.8 47-5011
441. 0.81 1 35-2011
442. 0.81 43-9022
443. 0.81 1 17-3012
444, 0.81 17-3024
445, 0.81 51-9192
446. 0.81 11-9141
447. 0.81 43-6013
448. 0.81 51-6021
449, 0.82 51-2031
450. 0.82 49-2098
451. 0.82 49-9045
452. 0.82 39-2021
453. 0.82 1 47-2211
454. 0.82 47-2072
455. 0.82 47-2021
456. 0.83 45-3011
457. 0.83 47-2221
458. 0.83 53-4021
459. 0.83 53-4031
460. 0.83 35-2012
461. 0.83 53-5011
462. 0.83 51-9023

Electric Motor, Power Tool, and Relategdrers

Fallers

Environmental Science and Protectiohnieans, Including Health

Locksmiths and Safe Repairers

Tree Trimmers and Pruners

Bartenders

Purchasing Agents, Except Wholesal@jlRatd Farm Products

Dishwashers

Hunters and Trappers

Medical Equipment Preparers

Cutting, Punching, and Press MachinerSe®perators, and Tenders,
Metal and Plastic

Computer Operators

Gas Plant Operators

Postal Service Mail Sorters, ProcesandsProcessing Machine Oper-
ators

Heavy and Tractor-Trailer Truck Drivers

Shampooers

Drywall and Ceiling Tile Installers

Helpers—Installation, Maintenance,Reygiir Workers

Motorcycle Mechanics

Aircraft Structure, Surfaces, Riggimgl 8ystems Assemblers

Logging Equipment Operators

Floor Layers, Except Carpet, Wood, and Hies

Barbers

Derrick Operators, Oil and Gas

Cooks, Fast Food

Word Processors and Typists

Electrical and Electronics Drafters

Electro-Mechanical Technicians

Cleaning, Washing, and Metal Picklingifigent Operators and Ten-
ders

Property, Real Estate, and Communitydtson Managers

Medical Secretaries

Pressers, Textile, Garment, and Relatedridls

Engine and Other Machine Assemblers

Security and Fire Alarm Systems Insgller

Refractory Materials Repairers, ExcejgkBiasons

Nonfarm Animal Caretakers

Sheet Metal Workers

Pile-Driver Operators

Brickmasons and Blockmasons

Fishers and Related Fishing Workers

Structural Iron and Steel Workers

Railroad Brake, Signal, and Switch Opesat

Railroad Conductors and Yardmasters

Cooks, Institution and Cafeteria

Sailors and Marine Oilers

Mixing and Blending Machine Setters, @joes, and Tenders
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Computerisable

Rank  Probability Label soccode

Occupation

463. 0.83 47-3011
464. 0.83 47-4091
465. 0.83 47-2131
466. 0.83 51-5112
467. 0.83 53-6031
468. 0.83 47-4071
469. 0.83 39-6011
470. 0.83 41-2012
471. 0.83 51-4023
472. 0.83 47-2071
473. 0.84 51-4111
474. 0.84 17-3023
475. 0.84 47-2161
476. 0.84 51-4192
477. 0.84 51-4034
478. 0.84 33-9032
479. 0.84 51-6052
480. 0.84 53-7073
481. 0.84 43-9081
482. 0.84 33-3041
483. 0.85 53-7062
484. 0.85 41-4012
485. 0.85 1 43-5041
486. 0.85 51-8013
487. 0.85 51-8091
488. 0.85 47-5021
489. 0.85 19-4051
490. 0.86 43-6011
491. 0.86 51-8099
492. 0.86 35-3041
493. 0.86 51-7041
494, 0.86 53-4041
495. 0.86 31-9096
496. 0.86 51-9032
497. 0.86 41-9022
498. 0.86 1 51-4011
499. 0.86 49-9043
500. 0.86 43-4021
501. 0.87 45-2090
502. 0.87 45-4011
5083. 0.87 51-4052
504. 0.87 47-2041
505. 0.87 47-2142
506. 0.87 13-1021
507. 0.87 51-7021
508. 0.87 35-2021

Helpers—Brickmasons, Blockmasons,e@tasons, and Tile and Mar-

ble Setters

Segmental Pavers

Insulation Workers, Floor, Ceiling, anallW

Printing Press Operators

Automotive and Watercraft Service Atétsl

Septic Tank Servicers and Sewer Pipe &€fan

Baggage Porters and Bellhops

Gaming Change Persons and Booth Cashiers

Rolling Machine Setters, Operators, amdidrs, Metal and Plastic
Paving, Surfacing, and Tamping EquiprOgetrators

Tool and Die Makers

Electrical and Electronics Engineerieghhicians

Plasterers and Stucco Masons

Layout Workers, Metal and Plastic

Lathe and Turning Machine Tool Settergr&iprs, and Tenders, Metal

and Plastic

Security Guards

Tailors, Dressmakers, and Custom Sewers

Wellhead Pumpers

Proofreaders and Copy Markers

Parking Enforcement Workers

Laborers and Freight, Stock, and Matktisers, Hand

Sales Representatives, Wholesale andfdtanring, Except Technical

and Scienti ¢ Products

Meter Readers, Utilities

Power Plant Operators

Chemical Plant and System Operators

Earth Drillers, Except Oil and Gas

Nuclear Technicians

Executive Secretaries and Executive Aidtrative Assistants
Plant and System Operators, All Other

Food Servers, Nonrestaurant

Sawing Machine Setters, Operators, amiefe, Wood
Subway and Streetcar Operators

Veterinary Assistants and LaboratoryrmahiCaretakers
Cutting and Slicing Machine Setters, @tpes, and Tenders
Real Estate Sales Agents

Computer-Controlled Machine Tool OjoesaMetal and Plastic
Maintenance Workers, Machinery

Correspondence Clerks

Miscellaneous Agricultural Workers

Forest and Conservation Workers

Pourers and Casters, Metal

Carpet Installers

Paperhangers

Buyers and Purchasing Agents, Farm Pioduc

Furniture Finishers

Food Preparation Workers
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Computerisable

Rank  Probability Label soccode

Occupation

509. 0.87 47-2043
510. 0.87 1 53-6021
511. 0.87 47-4051
512. 0.88 47-2061
513. 0.88 43-5061
514. 0.88 51-9141
515. 0.88 17-1021
516. 0.88 51-4051
517. 0.88 51-9012
518. 0.88 51-6091
519. 0.88 47-2053
520. 0.88 51-4194
521. 0.88 49-3043
522. 0.89 51-3011
523. 0.89 1 31-9094
524. 0.89 47-2022
525. 0.89 53-3022
526. 0.89 1 27-3042
527. 0.89 49-9096
528. 0.89 47-4061
529. 0.89 51-8021
530. 0.89 1 51-6031
531. 0.89 1 53-3041
532. 0.9 1 43-4161
533. 0.9 29-2011
534. 0.9 47-2171
535. 0.9 47-2181
536. 0.9 53-7021
537. 0.9 53-6041
538. 0.9 53-6051
539. 0.9 51-4062
540. 0.9 51-9195
541. 0.9 13-2021
542. 0.9 53-7072
543. 0.9 49-9097
544. 0.91 39-3012
545. 0.91 49-9063
546. 0.91 39-7011
547. 0.91 49-9011
548. 0.91 51-3091
549. 0.91 53-7071
550. 0.91 29-2071
551. 0.91 51-9121
552. 0.91 51-4081

Floor Sanders and Finishers

Parking Lot Attendants

Highway Maintenance Workers

Construction Laborers

Production, Planning, and ExpeditingkSle

Semiconductor Processors

Cartographers and Photogrammetrists

Metal-Re ning Furnace Operators and &end

Separating, Filtering, Clarifying, Rpitating, and Still Machine Set-
ters, Operators, and Tenders

Extruding and Forming Machine Settergr@prs, and Tenders, Syn-
thetic and Glass Fibers

Terrazzo Workers and Finishers

Tool Grinders, Filers, and Sharpeners

Rail Car Repairers

Bakers

Medical Transcriptionists

Stonemasons

Bus Drivers, School or Special Client

Technical Writers

Riggers

Rail-Track Laying and Maintenance EqeipnOperators

Stationary Engineers and Boiler Opesator

Sewing Machine Operators

Taxi Drivers and Chauffeurs

Human Resources Assistants, ExceptIPaydoTimekeeping

Medical and Clinical Laboratory Technatsy

Reinforcing Iron and Rebar Workers

Roofers

Crane and Tower Operators

Traf ¢ Technicians

Transportation Inspectors

Patternmakers, Metal and Plastic

Molders, Shapers, and Casters, Except MetdPlastic

Appraisers and Assessors of Real Estate

Pump Operators, Except Wellhead Pumpers

Signal and Track Switch Repairers

Gaming and Sports Book Writers and Runners

Musical Instrument Repairers and Tuners

Tour Guides and Escorts

Mechanical Door Repairers

Food and Tobacco Roasting, Baking, anth@myachine Operators
and Tenders

Gas Compressor and Gas Pumping StatioatOyze

Medical Records and Health Informatiarhiians

Coating, Painting, and Spraying Machietée, Operators, and Ten-
ders

Multiple Machine Tool Setters, Operatansl Tenders, Metal and Plas-
tic
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Computerisable

Rank  Probability soccode  Occupation

553. 0.91 53-4013 Rail Yard Engineers, Dinkey Operatord,Hwstlers

554. 0.91 49-2093 Electrical and Electronics Installersl &epairers, Transportation
Equipment

555. 0.91 35-9011 Dining Room and Cafeteria Attendants aarteBder Helpers

556. 0.91 51-4191 Heat Treating Equipment Setters, Opsraémd Tenders, Metal and
Plastic

557. 0.91 19-4041 Geological and Petroleum Technicians

558. 0.91 49-3021 Automotive Body and Related Repairers

559. 0.91 51-7032 Patternmakers, Wood

560. 0.91 51-4021 Extruding and Drawing Machine Settergr@prs, and Tenders, Metal
and Plastic

561. 0.92 43-9071 Of ce Machine Operators, Except Computer

562. 0.92 29-2052 Pharmacy Technicians

563. 0.92 43-4131 Loan Interviewers and Clerks

564. 0.92 53-7031 Dredge Operators

565. 0.92 41-3021 Insurance Sales Agents

566. 0.92 51-7011 Cabinetmakers and Bench Carpenters

567. 0.92 51-9123 Painting, Coating, and Decorating Warker

568. 0.92 47-4031 Fence Erectors

569. 0.92 51-4193 Plating and Coating Machine Setters, &pe; and Tenders, Metal
and Plastic

570. 0.92 41-2031 Retail Salespersons

571. 0.92 35-3021 Combined Food Preparation and Servingé&rincluding Fast Food

572. 0.92 51-9399 Production Workers, All Other

573. 0.92 47-3012 Helpers—Carpenters

574. 0.93 51-9193 Cooling and Freezing Equipment OperarwisTenders

575. 0.93 51-2091 Fiberglass Laminators and Fabricators

576. 0.93 47-5013 Service Unit Operators, Oil, Gas, and mgini

577. 0.93 53-7011 Conveyor Operators and Tenders

578. 0.93 49-3053 Outdoor Power Equipment and Other SmajingérMechanics

579. 0.93 53-4012 Locomotive Firers

580. 0.93 53-7063 Machine Feeders and Offbearers

581. 0.93 51-4061 Model Makers, Metal and Plastic

582. 0.93 49-2021 Radio, Cellular, and Tower Equipmengllest and Repairs

583. 0.93 51-3021 Butchers and Meat Cutters

584. 0.93 51-9041 Extruding, Forming, Pressing, and Cotmgablachine Setters, Oper-
ators, and Tenders

585. 0.93 53-7081 Refuse and Recyclable Material Collsctor

586. 0.93 13-2081 Tax Examiners and Collectors, and RevAgents

587. 0.93 51-4022 Forging Machine Setters, Operators, andéfs, Metal and Plastic

588. 0.93 53-7051 Industrial Truck and Tractor Operators

589. 0.94 13-2011 Accountants and Auditors

590. 0.94 51-4032 Drilling and Boring Machine Tool Sette®perators, and Tenders,
Metal and Plastic

591. 0.94 43-9051 Mail Clerks and Mail Machine Operators;dfit Postal Service

592. 0.94 35-3031 Waiters and Waitresses

593. 0.94 51-3022 Meat, Poultry, and Fish Cutters and Trireme

594. 0.94 13-2031 Budget Analysts

595. 0.94 47-2051 Cement Masons and Concrete Finishers
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Computerisable

Rank  Probability Label soccode

Occupation

596. 0.94 49-3091
597. 0.94 49-9091
598. 0.94 51-4121
599. 0.94 1 43-5021
600. 0.94 43-4111
601. 0.94 35-2015
602. 0.94 53-7032
603. 0.94 47-3014
604. 0.94 43-4081
605. 0.94 51-9197
606. 0.94 41-9091
607. 0.94 37-1011
608. 0.94 45-2011
609. 0.94 1 23-2011
610. 0.95 39-5092
611. 0.95 43-5111
612. 0.95 51-6062
613. 0.95 43-3011
614. 0.95 51-8011
615. 0.95 33-9031
616. 0.95 43-4121
617. 0.95 47-2073
618. 0.95 51-5113
619. 0.95 45-2021
620. 0.95 51-4072
621. 0.95 1 51-2022
622. 0.95 51-9191
623. 0.95 37-3011
624. 0.95 51-4033
625. 0.95 43-5051
626. 0.95 51-9071
627. 0.96 43-5032
628. 0.96 43-4171
629. 0.96 43-9061
630. 0.96 11-3111
631. 0.96 1 43-2011
632. 0.96 35-3022
633. 0.96 47-5051
634. 0.96 43-6014
635. 0.96 17-3031
636. 0.96 51-7031
637. 0.96 51-6064
638. 0.96 53-4011
639. 0.96 1 39-3011

Bicycle Repairers

Coin, Vending, and Amusement MachineiGas/and Repairers
Welders, Cutters, Solderers, and Brazers

Couriers and Messengers

Interviewers, Except Eligibility and hoa

Cooks, Short Order

Excavating and Loading Machine and Dradliperators
Helpers—Painters, Paperhangers, ielastand Stucco Masons
Hotel, Motel, and Resort Desk Clerks

Tire Builders

Door-to-Door Sales Workers, News andeSwendors, and Related

Workers

First-Line Supervisors of HousekeepmyJanitorial Workers
Agricultural Inspectors

Paralegals and Legal Assistants

Manicurists and Pedicurists

Weighers, Measurers, Checkers, and 8enRlecordkeeping
Textile Cutting Machine Setters, Opesatind Tenders

Bill and Account Collectors

Nuclear Power Reactor Operators

Gaming Surveillance Of cers and Gamingstigators

Library Assistants, Clerical

Operating Engineers and Other ConsiruEtjuipment Operators
Print Binding and Finishing Workers

Animal Breeders

Molding, Coremaking, and Casting Macl8egters, Operators, and

Tenders, Metal and Plastic

Electrical and Electronic Equipmentefigsers

Adhesive Bonding Machine Operators andérs

Landscaping and Groundskeeping Workers

Grinding, Lapping, Polishing, and BufMgchine Tool Setters, Oper-

ators, and Tenders, Metal and Plastic

Postal Service Clerks

Jewelers and Precious Stone and Metalevgork

Dispatchers, Except Police, Fire, andAamice

Receptionists and Information Clerks

Of ce Clerks, General

Compensation and Bene ts Managers

Switchboard Operators, Including AmsweService

Counter Attendants, Cafeteria, Food €mien, and Coffee Shop
Rock Splitters, Quarry

Secretaries and Administrative Asdistdtxcept Legal, Medical, and

Executive

Surveying and Mapping Technicians
Model Makers, Wood
Textile Winding, Twisting, and Drawingt®achine Setters, Opera-

tors, and Tenders

Locomotive Engineers
Gaming Dealers
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Rank  Probability Label soccode

Occupation

640. 0.96 49-9093
641. 0.96 35-2014
642. 0.96 39-3031
643. 0.96 43-3021
644. 0.97 53-6011
645. 0.97 51-7042
646. 0.97 51-2092
647. 0.97 51-6042
648. 0.97 51-2023
649. 0.97 1 13-1074
650. 0.97 51-6061
651. 0.97 51-9081
652. 0.97 51-9021
653. 0.97 51-9022
654. 0.97 37-3012
655. 0.97 45-4023
656. 0.97 51-9083
657. 0.97 1 41-2011
658. 0.97 49-9061
659. 0.97 39-3021
660. 0.97 51-5111
661. 0.97 41-2021
662. 0.97 1 43-4071
663. 0.97 41-9021
664. 0.97 43-2021
665. 0.97 19-4011
666. 0.97 43-3051
667. 0.97 1 43-4041
668. 0.97 35-9031
669. 0.98 41-9012
670. 0.98 51-9061
671. 0.98 43-3031
672. 0.98 43-6012
673. 0.98 27-4013
674. 0.98 53-3031
675. 0.98 1 13-1031
676. 0.98 41-2022
677. 0.98 1 13-2041
678. 0.98 51-4035
679. 0.98 43-5071
680. 0.98 43-3061
681. 0.98 51-9111
682. 0.98 51-9194
683. 0.98 43-3071
684. 0.98 27-2023
685. 0.98 13-1032
686. 0.98 1 13-2072

Fabric Menders, Except Garment

Cooks, Restaurant

Ushers, Lobby Attendants, and TicketrBake

Billing and Posting Clerks

Bridge and Lock Tenders

Woodworking Machine Setters, Operasms Tenders, Except Sawing

Team Assemblers

Shoe Machine Operators and Tenders

Electromechanical Equipment Assemblers

Farm Labor Contractors

Textile Bleaching and Dyeing Machine @es and Tenders

Dental Laboratory Technicians

Crushing, Grinding, and Polishing Maeh8etters, Operators, and
Tenders

Grinding and Polishing Workers, Hand

Pesticide Handlers, Sprayers, and Agtpii, Vegetation

Log Graders and Scalers

Ophthalmic Laboratory Technicians

Cashiers

Camera and Photographic Equipment Repair

Motion Picture Projectionists

Prepress Technicians and Workers

Counter and Rental Clerks

File Clerks

Real Estate Brokers

Telephone Operators

Agricultural and Food Science Technician

Payroll and Timekeeping Clerks

Credit Authorizers, Checkers, and €lerk

Hosts and Hostesses, Restaurant, Loamgj€offee Shop

Models

Inspectors, Testers, Sorters, Samplats)eighers

Bookkeeping, Accounting, and Auditingrics

Legal Secretaries

Radio Operators

Driver/Sales Workers

Claims Adjusters, Examiners, and |igasirs

Parts Salespersons

Credit Analysts

Milling and Planing Machine Setters, @mes, and Tenders, Metal
and Plastic

Shipping, Receiving, and Traf ¢ Clerks

Procurement Clerks

Packaging and Filling Machine OperatodsTenders

Etchers and Engravers

Tellers

Umpires, Referees, and Other Sports @& ci

Insurance Appraisers, Auto Damage

Loan Of cers
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Rank  Probability Label soccode Occupation

687. 0.98 43-4151 Order Clerks

688. 0.98 43-4011 Brokerage Clerks

689. 0.98 43-9041 Insurance Claims and Policy ProcessiekE!
690. 0.98 51-2093 Timing Device Assemblers and Adjusters
691. 0.99 1 43-9021 Data Entry Keyers

692. 0.99 25-4031 Library Technicians

693. 0.99 43-4141 New Accounts Clerks

694. 0.99 51-9151 Photographic Process Workers and Piogédachine Operators
695. 0.99 13-2082 Tax Preparers

696. 0.99 43-5011 Cargo and Freight Agents

697. 0.99 49-9064 Watch Repairers

698. 0.99 1 13-2053 Insurance Underwriters

699. 0.99 15-2091 Mathematical Technicians

700. 0.99 51-6051 Sewers, Hand

701. 0.99 23-2093 Title Examiners, Abstractors, and Seasch
702. 0.99 41-9041 Telemarketers
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